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A strongly coupled many-body system (a system of fermions confined in a shell surrounding
the Fermi surface for which the variation in the single-particle kinetic energy is neglected) is
defined. Some general properties of this system are obtained, in particular a criterion for
permissible approximations. It is shown that a set of diagrams in which an electron of momen-
tum — & and of spin + interacts with many electrons of momentum k +§ and spin t, where § does
not grow too large, can be consistently extracted from the totality of graphs generated by this

strongly coupled Hamiltonian.

When analyzed, these lead to a ground-state and single-particle

spectrum displaying the important qualitative features of a BCS superconductor.

1. INTRODUCTION

The phenomenon of superconductivity, generally
believed to be due to the instability of the normal
Fermi sea under the formation of singlet-spin
electron pairs, is described theoretically in vari-
ous approximations which retain only interactions
between electrons of opposite spin and momentum.
These -Ei, k# interactions represent but a small
part of the Hamiltonian, and the reason they domi-
nate the behavior of the system—why, for example,
the interaction between — K+ and k+3+ (where §
is small) would not be as important—has never
been completely clarified. In this paper we con-
sider the problem of a system of fermions confined
in a container, subject to a weak attractive inter-
action, and attempt, beginning with the full two-body
Hamiltonian, to extract in a systematic way from
the totality of graphs a subset which can be shown
to dominate in the limit that certain parameters
become small. This set of diagrams in which an
electron of momentum - K and spin + interacts with
many electrons of momentum Kk +d spin + (where q
is not too large) can be analyzed in a consistent
manner and results in a single-particle spectrum
characteristic of a superconductor. A possible
criterion for the validity of the pairing approxima-
tion is that these relevant parameters in fact can be
small.

The qualitative changes in the “normal” electron
wave function, associated with the transition into
the superconducting state, seem to be related to
the extreme degeneracy of the electron levels at
the Fermi surface. Everything indicates a large
change for those states near the Fermi surface,
but there is no indication at all (in fact the con-
trary) of anything drastic happening for the others.
It appears likely that as the coupling constant goes
to zero, the single-particle states involved in the
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construction of the coherent superconducting state
become more and more closely limited to the re-
gion surrounding the Fermi surface.

We therefore are led to divide the many-body
system into three regions: a region deep inside
the Fermi sea (I), a region far outside the Fermi
sea (II), and finally the region of interaction just
surrounding the Fermi surface. We regard the
region of interaction as critical, where the single-
particle states are highly degenerate and where the
instabilities associated with the appearance of
superconducting or superfluid states manifest them-
selves. We assume that such a region can be de-
fined in the limit of a very weak interaction and
that once treated correctly the effects of regions I
and II can be taken into account by some perturba-
tive technique.

To simplify matters as much as possible and to
focus our attention on what we believe are the
relevant points, we replace the kinetic-energy
operator in the interaction region by its expecta-
tion value

T=(T)

and set this expectation value equal to zero by a
shift in the energy scale. This defines what we
call a strongly coupled model. It is motivated by
the belief that, since the important single-particle
states are confined to a small shell around the
Fermi surface where the variation in kinetic en-
ergy is not large, all of the qualitative results
must be contained in this simplified system. A
similar strong-coupling approximation to the BCS
Hamiltonian yields results that are qualitatively
and quantitatively almost the same as those ob-
tained including the variation in kinetic energy.
In addition we include only interactions between
electrons of opposite spin (reflecting the fact that
for short-range interactions, electrons in a sym-
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metric-space state interact more strongly than
those in an antisymmetric-space state) and further
let the interaction be a constant over the shell of
interaction. These simplify, but are not entirely
necessary for, what follows. We thus arrive at a
completely degenerate, interacting, finite, many-
fermion system of 4N single-particle levels of both
spins to be occupied by 2N fermions, half of spin
up, the other half of spin down.

In Sec. II the general properties of such a system
are reviewed and some comments made on possible
criteria for the validity of approximations in many-
fermion systems. In order to make this paper
reasonably self-contained, we have repeated some
earlier results.

In Sec. III an analysis of the graphs generated by
the strongly coupled system leads to the definition
of what we call the generalized BCS Hamiltonian—
a generalization of graphs of the BCS topology (in
which an electron of momentum — K and spin ¥ can
interact with many electrons in the region surround-
ing k+) and an approximation to the full Hamiltonian
which is consistent with the criteria outlined in
Sec. II. The weight of these GBCS graphs is then
analyzed by a cycle-polygon method.

In Sec. IV the analytic and graphical properties
of the strongly coupled BCS Hamiltonian are dis-
cussed.

In Sec. V the ground state and excited states of
the GBCS Hamiltonian are obtained. The spectrum
displays the energy gaps and degeneracies charac-
teristic of the single-particle spectrum of a super-
conductor.

These results are discussed in Sec. VI, and in
the Appendices we display some details of our
methods for counting and weighing graphs.

II. STRONGLY COUPLED SYSTEM
A. Definition

The Hamiltonian for a system of fermions inter-
acting via two-body forces may be written

H=H,+H, , (2.1)
where
Ho=24 [ dF v (F) (- 229%/2m) 3, (F) , (2.2)
H =% ZB [ [ aF,df, vk (F,) vi(E,)
x v(Ty = Tp) Y5 (F,) o (Fy), (2.3)

where * means adjoint in the second quantized
space. For a nonrelativistic fermion system, ¢ is
a two-component spinor which satisfies the anti-
commutation relations

{lpa (F)’ IPB (FI)} =0 ’

{4 ), P3G} =005 8G - ) . (2.4)
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When o(F, - I';) is small enough, only single-
particle states in the region immediately surround-
ing the Fermi surface are greatly altered. We at-
tempt to treat the region of the Hilbert space
spanned by these single-particle states with great
care assuming that alterations over the rest of the
space can be treated as perturbations. To do this
we consider the effect of the interaction in the shell
surrounding the Fermi surface (the interaction
shell) and omit its effect in the inner and outer
regions (I and II of Fig. 1).

As (T, - T,) grows small, the thickness of the
interaction shell (and thus the kinetic-energy varia-
tion of the single-particle states over this shell)
alsogrows small. We can imagine a limit in which
the variation of the kinetic energy over the inter-
action shell can be neglected entirely and H, is re-
placed by its expectation value (H,) =T, the con-
stant average kinetic energy of the system. This
defines the strongly coupled system.*

In order that such a system have a finite ground-
state energy, it would be necessary to limit the
region of interaction to some finite domain in mo-
mentum space, to provide the cutoff usually pro-
vided by the energy denominators. Limiting the
interaction to a shell surrounding the Fermi sur-
face preserves the symmetry between particles
and holes and is particularly germane since, if
the strong-coupling approximation is to make sense,
the single-particle states involved must not vary
widely in kinetic energy.

These conditions are most conveniently formu-
lated in momentum space. Expanding ¢, (F),

o1
wa(r):‘T‘ﬁ—E'Eaci,cug eikr, (2.5)
where § is the volume of the system and «¢ is a

two-component spinor, we obtain [for a spin-in-
dependent v(¥, - T,)]

1 s *
Hy=3 Ll v(@) .3, 0 Cir-g,00 Cit v Chyos
»k%q,0,0
k,k’,K+d,E'~ T in shell (2 6)
where .

v(@)=(1/9) [vF) e TFaF,
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and where we assume that »(F) is bounded. The
anticommutation relations for the ¢ operators are

{Ci,a’ ci',o‘}= o, {Ci,oy C;’,o'} = Gi,i'éu.o' . (2' 7)

We will simplify the notation by setting the con-
stant T equal to zero, thus shxftmg all energies by
T. By the notation k, k', k+q, k'-§ in _shell, we
mean that the ma,gmtudes of the vectors k and k’
satisfy the condition

kp-0<|k|<kp+6, (2.8)

where presumably 6/kp<< 1, wh11e the vector q
ranges over all values such that k+q and k' -4
also satisfy (2.8). This has the effect of allowing
only those scattering processes which take a par-
ticle or hole in the shell defined above into another
particle or hole in this shell.

For short-range forces the interaction between
antiparallel spins dominates that between parallel
spins for which the exchange term is of opposite
sign to the direct term. If we thus restrict our-
selves to singlet spin states the interaction Hamil-
tonian becomes

H, _EE v(@) cfagr ch. G6CENCEr - (2.9)

' .Q

We assume that the total number of single-par-
ticle “unperturbed” states of both spins in the shell
defined by (2.8) is 4N and that the Fermi surface
is symmetrically placed so that the total number of
particles is 2N. Of course, N is proportional to
for constant 8. The vacuum state | ¢,) of the un-
perturbed system is defined so that all single-par-
ticle levels below kg are filled, while all single-
particle levels above ky are empty. All other
“unperturbed” configurations | ¢;) (there are a
total of {(2N)!/[(N)1]%}? configurations) can be
obtained by creating holes below and particles
above the Fermi surface, keeping N constant.
These are constructed from the vacuum by operat-
ing on it with the creation operators ciq, ci,o where
K lies above the Fermi surface and I lies below:

cf cieeer,|d0)
(2. 10)

|08 v vty fyenot,) =CE

Creation and annihilation operators can be de-
fined, as has been pointed out by Hugenholtz and
Van Hove? for arbitrary definitions of the vacuum
states. One can consider as the vacuum state any
of the unperturbed states of the system, referring
all other states to this vacuum by the addition of
particles or holes. With respect to this arbitrarily
defined vacuum, c,’f is a creation operator if kis
one of the states unoccupied in the vacuum, and it
is an annihilation operator if Kk is one of the states
occupied in the vacuum. On the other hand, ci is
considered a creation operator if k is one of the
states occupied in the vacuum. Any results ob-

tained for vacuum expectation values of operators
not depending explicitly upon a particular choice
of the vacuum state are equally valid for any di-
agonal matrix elements with all quantities suitably
redefined. We will have explicit examples of such
behavior later.

As far as the strongly coupled theory is con-
cerned any “unperturbed” state of momentum zero
(since it has zero kinetic energy) is as good a vac-
uum as the |¢,) we choose. However, as a state
which is related to the vacuum of the full theory,
| ¢o) is preferred since in the full theory | ¢,), as
defined above, has the lowest kinetic energy.

In the limit that v(d) does not vary over the in-
teraction shell, we set

v(d) =g (2.11)
and obtain
Hy=g 20 Ciir CheqCin Cir - (2.12)
683
The BCS interaction Hamiltonian
Hpeg=-— VEZZ" ek cX cipn Cin (2.13)

is extracted from (2.12) by retaining only interac-
tions between electron pairs of opposite momentum
and by setting

g=-V, (2.14)
where
v=|v|.

The strongly coupled model of a superconductor
(2. 13) has previously been discussed by, among
others, Anderson® and Thouless* using nonpertur-
bational methods. The full strongly coupled sys-
tem (2.12) has also been studied by the present
authors®® in the rest of Sec. II we briefly review
some of our previous results which are relevant.

B. Expansion in Coupling Constant

To analyze the strongly coupled system we make
use of the resolvent operator R(z) defined by

R(z)=1/H=-2) . (2.15)

This operator has been discussed previously in
connection with the many-body problem by Hugen-
holtz” and Van Hove.® If we expand the vacuum
state of the unperturbed system |¢,) in the eigen-
functions | ¥n) of the interaction Hamiltonian H,,
where

Hy|Um)=En|¥n) , (2. 16)
and so that
l¢’0>=2m ‘wm><wml¢o> y (2. 17)

the vacuum expectation value of the resolvent op-
erator is
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(R(2))o=(do| R(2)| 0¢) =2m | {Do| ¥m) P(Em—2)"%.
(2.18)

The analytic properties of (R(z)), are immedi-
ately evident from this last expression, since the
sum is finite. The matrix elements of the resol-
vent operator are analytic everywhere except for
poles on the real axis, and these poles are bounded
both above and below by the maximum and minimum
energy levels Eg< E< Eg,,. Such maximum and
minimum energies exist, since the strongly coupled
system is finite and v(¥) is bounded.

To evaluate (¢,lR(z)1$,) we make an expansion
in powers of the coupling constant g in H,,

(0l B 90)==15 (1) (aul ]9, (2.10)

and this expansion has a finite radius of conver-
gence in 1/z. The crux of the problem lies in the
evaluation of vacuum expectation values of powers
of the interaction H,.

For an interaction of the form (2. 12) the evalua-
tion of matrix elements such as {(¢,|H]|¢y) has been
treated in detail in many places. Using Wick’ s
theorem, ® each matrix element is given by a sum
over contractions of the operators and can be put
into one-to-one correspondence with Feynman-
like diagrams. There are two basic types of dia-
grams: The connected diagrams are proportional
to the volume of the system; the disconnected
diagrams have a volume dependence depending
upon the number of connected diagrams of which
they are composed. A connected diagram is de-
fined as one which cannot be divided into two sep-
arate parts without cutting at least one line. A
disconnected diagram can be so divided.

If we let S, denote the sum over all connected
vacuum-to-vacuum graphs of order », then
{po!H{Ip,) can be decomposed, following the anal-
ysis of one of us, ® into products of connected
graphs:

(ol H]| o) =&" (s,+ 2 CleSaSa

+ 2

ClpySoSpSy e +c,h"1(sgﬁ, (2. 20)
a+Beyan
where the coefficients Ch,.

1w
s sl ayla,l. .. a,l

.. are given by
Cora

(2.21)

It is shown in Ref. 5 that the resolvent operator
can be written as

(R(2)) = fo"dt etfeBotet) (2.22)
where
Bo(--gt)=i)l 5‘; (-gt)" . (2.23)
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The integral representation (2. 22) is valid for
Rez < 0. The function so defined can however be
continued into the entire z plane. It then follows
that

(90| Ul=it)| $0) =Zm [{bo| ) [ €75
Bot-et) | (2.24)
(¢glm? is the matrix element between the unper-
turbed vacuum and the mth eigenstate of the exact
Hamiltonian. The asymptotic behavior of By(-gt)
as t- < must be dominated by a term linear in #:

=e

By(- gt)~-at ,
where a is the lowest eigenvalue of H.
C. Convergence of Linked-Cluster Series

We observe that

exo (55 (-g1r) <2 |Gl P, 2.2
naln ’ m

and the last is an entire function which increases
as |t/ - no faster than e® and thus is of order 1.
By Hadamard’s factorization theorem! an entire
function f(¢) which is not zero at #=0 and which is
of order 1 can be written in the form

f)=e?' p(t) , (2.26)
where Q(¢) is a polynomial of degree not greater
than 1 and P(¢) is the canonical product

P(t) =ﬁ A-t/t)et'tn

n=0

(2.27)

where the £, are the zeros of f(t).
If the series

mbmhg%umv

had an infinite radius of convergence, By(-gt)
would be analytic in the entire ¢ plane and eBo
would have no zeros. Then the function

Em | (d’o l wm> iz e'Emt

would have no zeros and, since it increases no
faster than e® as |f|~w, it can, by the above
argument, be written in the form

Zom | {Po| ¥m) [2e Bt =4 B¢ , (2. 28)

This gives a trivial result because it implies that
the system possesses only one energy level. For
nontrivial cases we conclude that By(~gt) has a
finite radius of convergence which immediately
implies that the closely related series

3 S, (=gt

n=1

(2.29)

which for this model is essentially the Goldstone!!
series, has a zero radius of convergence. It is
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FIG. 2. Two fourth-order BCS diagrams.

shown further in Ref. 5 that the series (2.23) has
a nonzero radius of convergence in ¢, a radius of
convergence determined by the lowest zero of

Zm l (d)ol wm> lz e.B"" .
D. Subsets of Graphs

For a many-fermion system it is usually not
possible to find exact expressions for S,. How-
ever, various subsets of graphs which are exactly
or approximately calculable seem sometimes to
dominate. One therefore hopes it will be possible
by summing over such subsets to obtain meaningful
results. One of the problems that can arise in
doing this we discuss below.

Let us consider a system described by the BCS
reduced Hamiltonian (in the strong-coupling limit):

x %
Hgcg=— VEZE;'CE' C-fs C-fn Ciy -

and state
(2. 30)

We now consider an attempt to obtain information
using subsets of the totality of graphs generated
by this Hamiltonian.

A diagram generated by the BCS reduced inter-
action Hamiltonian (2. 13) is called a BCS diagram.
Since Hpg contains only a singlet interaction, a
BCS diagram will divide into an upper and lower
part with no solid lines connecting these parts as
shown in Fig. 2. By convention the upper part
represents the contractions of the spin-up opera-
tors; the lower part, the contractions of the spin-
down operators. Figure 2(a) is an example of a
ladder diagram, which is defined as a diagram
where the upper part is identical to the lower part.
In a nonladder diagram the spin-up part is con-
nected together differently from the spin-down
part. For the BCS case, as will be shown later,
we find

This has a known exact solution* with ¢
Eo==(N2+N)V .

S.=N" S(o>_ls(1)+1 s@, ... (.1 n-as("_m
n n N°on IV—! n t —N n ’

(2.31)

where S,%, S, ..., are the number of certain
subsets of the graphs generated by the BCS Hamil-
tonian to be defined later. S\ is the number of
ladder diagrams; this is easily shown to be

S\ =(n-1)1. (2.32)
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Examination of (2.31) suggests that one might at-
tempt to approximate S, in the limit that N becomes
large by the ladder diagrams:

S,~S\ON" | (2.33)

This was done by Fukushima and Fukuda!? who ap-
proximated S, generated by the BCS reduced
Hamiltonian by the sum of all ladder diagrams
neglecting all other contributions, arguing that
they are at most of order 1/N. If this approxima-
tion for S, is now inserted into Eq. (2.23), one ob-
tains

By(Vt) = - In(1 - NV?). (2. 34)

This gives an incorrect ground state for attractive
potentials and displays the wrong asymptotic be-
havior; the result has been completely distorted
by the approximation.

To discover what has gone wrong we note (the
following is the argument of a previous publication®)
that in this approximation [{0| H% sl 0)! is set equal

to
|INV|"SQ = |NV|" (- 1)1 . (2. 35)

On the other hand, if we consider all graphs,

°)

=v' L Olci ey caip cipr. . .Cip|0)
Ky

(0|H?%¢s]0) = <0\ (V éc%‘. cf;. C-gn cp.)"

- -

En
iR
(2.36)
Further since the vacuum expectation value of
products of fermion operators satisfies the inequal-
ity

[<0]...c...c*x ..|o)|<1, (2.37)
then
| 0| Hpes| 0) | <| V7| . 2 1=4|VNZ|". (2.38)
o

If we compare this result with that obtained by
considering only ladder diagrams (2. 35), we see
that for » large enough

(n=-1)1>4N"

which means that the subset of ladder graphs does
not correspond to an actual Hamiltonian.

Looking more closely at the diagrammatic anal-
ysis, we discover what is wrong. The evaluation
of (01 H%csl 0) by means of Wick’s theorem usually
involves summations over indices attached to in-
termediate particle or hole lines disregarding re-
strictions imposed by the exclusion principle. We
are therefore obliged to include a large number of
processes apparently violating this principle so
that the violation may be cancelled out as a whole.
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This point has been stressed by Goldstone!! as ex-
tremely important if the linked-cluster expansion
is used.

In the fourth order, for example, we see that the
graphs shown in Fig. 2(a), which are included in
S,“”, may violate the Pauli exclusion principle in the
intermediate states. However, since all the graphs
included in S’ are positive, there is no possible
way they can be cancelled. A diagram that con-
tributes to the wanted cancellation, Fig. 2(b), is
neglected in the ladder approximation. This dia-
gram gives a contribution - N3 compared with N'*
for a ladder diagram, but the number of this type
increases rapidly with n, all adding up to a con-
tribution which cannot be neglected. [Our analysis
of the BCS graphs indicates that the ladder graphs
dominate only as long as n< (3N)'2,]

E. Criterion for Validity of Many-Body Approximations

The results obtained above show that the difficul-
ties encountered in attempting to approximate S, of
(2. 31) arise due to the inclusion of a very large
number of uncancelled exclusion-principle-violating

rocesses (following Kelly, '? hereafter abbreviated
EPV processes) in higher-order terms of the ex-
cnsinn, This suggests that ar approximation vsed
in the analys<is of many-body systems which leads
fo the inclusion of large numbers of EPV processes,
< the nbsence of evidence to the contrary, should
be regarded with suspicion.

This has led us, in a previous publication, to
propose as one criterion for the validity of an ap-
proximation to a many-body system that it not re-
sult in the inclusion of large numbers of uncancelled
terms that violate the exclusion principle. One
method of achieving this is via what we have called
the proper completion.

Let {5{*} be some approximation to the full set
of connected graphs. We define a new function

gt > Sepy
(2.39)

where Sgpy denotes all contributions from exclu-
sion-principle-violating processes. The subscript
EP indicates that the new function contains no EPV
processes. Given the set of graphs {9"” f» Suppose
we can add to it another set {S{®’} with the following
properties: (i) Every process represented by the
graphs {S\"'} violates the exclusion principle.

(i1) The final result contains no EPV processes.

It then follows that

exp(ZL

nai

o ()

U (=N 0)gp = exp (Z i

na i

(0

W)
S () 0] U = in)] 0y
(2.40)

and we may calculate in the usual manner with the
new set of graphs. We call the set {S'*’} the proper
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completion of {S¥}.

We are thus led, having chosen a subset of
{5/*'} on the basis perhaps of a small parameter,
to add to this a subset {5’} as defined above with
no reference to this parameter. When this is done
the properly completed subset {S* +5’} will yield
an approximate U matrix by the usual formula.
Any set of connected graphs generated by a Hamil-
tonian (no matter how truncated) will have the
property of yielding a U matrix which contains no
exclusion-principle-violating processes. Thus we
may view the process of proper completion as a
process which converts an arbitrary set of graphs
into one which might come from a Hamiltonian.
Since the BCS graphs, as has been shown in Ref. 6,
are either ladder or EPV graphs, the BCS reduced
Hamiltonian can be viewed as resulting from the
proper completion of the ladder graphs.

A less exacting requirement follows. If again
{5} is some approximation to the full set of con-
nected graphs characterized as being of some or-
der in a small parameter, we can approximate the
function (2. 39) by adding to {S!*’} another set
{5{9} such that (i) all graphs of {S!®’} are of higher
order than {S!*’} and (4i) the final result contains
no EPV processes. It then follows that

exp( 5SS (g ) — (] U (= 1) o) 5w

nzl
(2.41)

to the same order in the small parameter as the
graphs S{*. The set {S\* +5.”} we call a comple-
tion of S\,

One of the difficulties in many-body theory of
this type is to find a parameter which is small and
in which some expansion can be made. The situa-
tion is confused by the necessity of including con-
tributions of higher order in this parameter in or-
der that the analysis be consistent. Although there
is fairly general agreement that N -« cannot be
taken too easily in any calculation, the same diffi-
culty car be encountered, as we shall see later,
with parameters that are apparently independent of
the number of particles or the volume of the sample.

1. GENERALIZED BCS (GBCS) HAMILTONIAN
A. Definition

Although the Hamiltonian (2.12)

Hy=g E ('uqv Ck' O Cin Ciy
£, k03

retains most of the complexity of many-body dy-
namics, it has been so shorn of (what we hope to
be) irrelevant difficulties that only two problems
remain: the exclusion principle and the phase sums
introduced at each vertex due to momentum con-
servation and the restriction of all states to the
thin shell surrounding the Fermi surface. We now



4
vq 1eq 2 19 °q
2+q 1+q 1+q 2 9 . .
T S
5N (2) (3 (4
2+q 1+q .
1] 1 1 1
] 1 ] :
() ®) %) ®
> > e
— < <
[C) (10) (11 12)
1 ' |< >|
(13) (14) (15) (16)
FIG. 3. (1), (2), (3), and (4) are the BCS vertices; the

others are not generated by the BCS Hamiltonian.

ask if there is some consistent manner in which we
can begin with (2. 12) and arrive at the results of
the BCS Hamiltonian (2. 13).

A graph generated by the Hamiltonian (2. 12) may
be constructed from any of 16 vertices produced by
the two-body interaction shown in Fig. 3. By con-
vention the upper part of a vertex represents par-
ticles with spin up and lower part represents par-
ticles with spin down. The BCS Hamiltonian picks
out of these 16 vertices just four which are
labelled (1) to (4). We call them the BCS-type
vertices. Any graph which we cannot construct
from these four vertices is not generated by the
Hamiltonian (2.13). For example, in Fig. 4,
graph (a) is not of the BCS type whereas graphs
(b), (c), and (d) are. In addition to this topological
restriction, each graph of the BCS type couples
only electron lines of opposite spin and momentum.

To analyze the phase-space sums, we consider
first the BCS-type vertices [Fig. 3, (1)-(4)]. 1If
we fix the incoming momentum I, the available
phase space for scattering is seen to be a function
Ny(q) strongly dependent on the magnitude of the
total momentum ¢ of the incoming pair. The max-
imum phase space available for scattering (and
thus the maximum weight for the vertex) will occur
when ¢=0. As g departs from zero, the available
phase space decreases rapidly as shown in Fig. 5.
All of the BCS-type vertices depend upon ¢ in the
same manner. As the interaction shell grows thin-
ner (8/ky-0), the phase-space curve grows sharper
and sharper and comes closer and closer to the
(k4, - k+) pairing.

The 12 remaining vertices are not of the BCS
type; these contribute a phase-space sum M,(q) of
Fig. 5 which goes to zero as ¢ -0, reaches a max-
imum at g ~(256)!/%, and then decreases in the same
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FIG. 4. Graph (a) is not of the BCS type whereas (b), (c),
and (d) are.

manner as N,(g) from ¢=25. Hence they contribute
less than the particle-particle processes. What is
more significant, they contribute according to
another (smaller) coupling constant than all of the
particle-particle or hole-hole processes—those
generated by the four BCS-type vertices—and

their contribution goes to zero as the momentum

of the scattering pair goes to zero.

Thus the graphs generated solely from the ver-
tices (1)-(4) are distinguished from the totality of
graphs generated by the strongly coupled Hamilto-
nian in that they contain contributions when the mo-
mentum of the pairs being scattered approaches
zero. Since we are particularly interested in the
scattering of electron pairs of small (but not neces-
sarily zero) total momentum, these are the graphs
that dominate.

Guided by this we consider what we call the gen-
eralized BCS (GBCS) Hamiltonian, a Hamiltonian
which generates all the graphs produced by the
BCS-type vertices (1)-(4) of Fig. 3. If we use
hg, and pg,, respectively, for hole and particle
operators as referred to our vacuum, we may
write

Hgpes=~- Vi%i {pf.a' PE’-&A Din P

* %
+hi¢3t hE'-El h{u hi"*‘hioa' h‘i'-al Din Pir

x % -
+Diug Diegs hgo by b . (3.1)
Nx 1.0
8
8 Ny(q)
4
2
Mya)
o 6 26 36 a4t g

FIG. 5. Phase-space weight as a function of pair

momentum q.
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FIG. 6. Gaudin’s decomposition
of a two~-body vertex.

From this Hamiltonian we obtain a set of graphs
topologically identical to the BCS set, but not re-
stricted to (k#, -k+) pairing. The GBCS Hamil-
tonian may therefore be considered the most natu-
ral generalization of the BCS reduced Hamiltonian.

The dominance of low-momentum pair scattering
is a consequence of the smallness of 5§/k;. What
we believe is the relevant natural parameter of the
problem (later called Q/N) is proportional to
(6/k)*and is independent of the number of particles
or the volume of the system. Of the graphs gener-
ated by the Hamiltonian (2. 12), the ladder graphs
are of lowest order in this parameter. One is
thus tempted to extract these graphs and use them
as the leading term in some approximation. How-
ever, using the subset of ladder graphs to approxi-
mate S, leads to the same meaningless results as
in the BCS case discussed in Sec. II and for the
same reasons. The GBCS Hamiltonian (3. 1) may
be viewed as a completion of the ladder graphs
generated by (2.12) in the sense discussed at the
conclusion of Sec. II. The total set of graphs gen-
erated by (3. 1) does not give any uncancelled ex-
clusion-principle-violating processes while adding
no graphs of as low an order in (6/k;)? as the lad-
der graphs. We may thus regard the GBCS Hamil-
tonian (3.1), which is a natural generalization of
the BCS Hamiltonian, as resulting from the com-
pletion of the ladder graphs generated by the full
strongly coupled Hamiltonian (2. 12).

B. Gaudin’s Cycle Decomposition

To determine the sum over the connected graphs,
Sn, generated by the GBCS Hamiltonian we must
(i) find all the topologically nonequivalent diagrams
of order n, (ii) determine the sign of a given dia-
gram, (iii) determine the weight of that diagram,
and (iv) sum the contributions of such connected
nth-order diagrams.

We attempt to do this using a method of graphical
decomposition first introduced by Gaudin!* for
handling summations over a spin variable; the
treatment of the GBCS diagrams becomes particu-
larly transparent with this technique.

According to Gaudin a two-body vertex i is de-
c?mposed into two separate parts which we label
i'"and i". This is shown in Fig. 6. The parts i’
and i’ represent, respectively, the creation and
annihilation operators. All of the graphs with the
BCS topology can be constructed from Gaudin ver-
tices for which both the lines leaving '’ or entering

'S

2\

— = <\ def:ggélti(j:ugghe
._—ﬂe ;__.. />‘:.: BCS-type vertices.
—

i’ go in the same direction. This would not be true
for a general two-body vertex. The condition that
both of the incoming and outgoing lines be either
particle or hole lines defines the BCS-type vertices
(1)-(4) of Fig. 3. This is shown in Fig. 7. We
emphasize that the GBCS diagrams are topologically
identical to those generated by the BCS Hamiltonian.
Thus the cyclic decomposition of the graphs gener-
ated by these two Hamiltonians is identical.

A line leaving a vertex part ¢ " must end at a part
j’'. A diagram analyzed in this way will be decom-
posed into a certain number of cycles. An example
of this is shown in Fig. 8, where a fourth-order
GBCS diagram is decomposed into the cycles vy,,
¥s, and y.. As a result of the topology of the BCS-
type vertices, a single cycle will be made entirely
of particle lines or hole lines as there is no mixing
of particles and holes in a single cycle. The de-
coupling of a diagram is unique; once the diagram
is given so are the cycles; or if we specify the
cycles and their relative positions, the diagram
is completely determined.

The simplest cycles are those of the type v,
and y. in Fig. 8. We call them elementary cycles.
A ladder diagram is defined as a diagram where
the upper part is identical to the lower part as il-
lustrated in Fig. 9 and is composed solely of ele-
mentary cycles. We further observe that an nth-
order ladder diagram consists of » cycles which
is the maximum number of cycles into which any
diagram may be decomposed.

For any diagram other than a ladder, at least
one cycle is not of the elementary type; therefore,
a nonladder diagram will consist of less than »n
cycles. Since any connected diagram, excluding

o2 3l 4
-
Cycles
" K B FIG. 8. Decomposition of
1_“73::5—4" © a fourth-order diagram,
(——
rl 3t LS
—
——
2y 4 T
—
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\ : FIG. 9. Decomposition of a
Lﬁ—**———‘ fourth-order ladder diagram.

first order, consists of at least one hole and one
particle line, two is the smallest number of cycles.

To simplify the counting, scattering processes
with zero momentum transfer are included, cor-
responding to the presence of diagonal terms in
the Hamiltonian. Such processes lead to a class
of nonladder diagrams in which a hole line goes
back to the same vertex from which it started.
Such a part (called by Goldstone a passive unex-
cited particle loop) comes from the contraction
‘hagohiet ; we will call it a bubble. An example
of the decomposition of a diagram containing a
bubble is shown in Fig. 10.

The sign of a diagram is uniquely determined by
its topology; with the cycle analysis the sign of a
given diagram may be written!* as

(=), (3.2)

where f (which goes from % to 2) is the number of
cycles of which the diagram is composed. It is
important to note that all contributions from nth-
order diagrams with the same number of cycles
will have the same sign. This is one of the rea-
sons that the classification of the connected dia-
grams according to the number of cycles is useful.
Before attempting to evaluate the sum of nth-
order connected GBCS diagrams, we shall demon-

il

—— —— FIG. 10. Decomposition of a dia-
; " H gram with a bubble.

H "

1 ]

' 1

! ]

1 1

strate how the cycle analysis can be used to find
the corresponding sum of the BCS diagrams. We
note that in the limit that the pair momentum 4 -0,
these two sums of diagrams must be equal.

C. Cycle Analysis of BCS Diagrams

Application of the cycle analysis to the strongly
coupled BCS Hamiltonian (2.13) reveals that the
weight of any BCS graph is given entirely by the
number of cycles into which it is decomposed.
Consider the ladder graph Fig. 9. In order that
this be a BCS graph, d=0. Then all of the elec-
trons are in (- {¥, {4) pairs. The weight of this
graph is just the sum over the momenta I, 5, 5,
and 4 with the restriction that these momenta lie
in either the particle or hole shell. Since 1, §, 5,
and 4 are independent of one another, the summa-
tion gives immediately

2 1=N*.

PIEIR)

i,3,3,1

As the interaction shell has the same number of
particle and hole states, it is irrelevant in the sum-
mation whether we have contractions of hole or par-
ticle operators. At this point the advantage of in-
cluding processes with zero momentum transfer
becomes clear: All free indices have the same
number N of possible values.

The weight of this graph is N* and its sign is
(=1)™ =(-1)*4=1. The graph therefore contrib-
utes +N*. Inthe same manner we can easily show
that any ladder graph in the nth order is decom-
posed into n cycles each of which yields a free in-
dex i (i, 2, 3, and 4 above). Thus the total con-
tribution of such a graph is N". There are (n - 1)!
ladder graphs of the nth order. Therefore as has
been mentioned before (2. 32), we get

SLADDER _ (5, _ 1)1 N" . (3.3)

We now consider a nonladder graph such as that
shown for example in Fig. 8. The cycle decompo-
sition with the BCS labelling is shown in Fig. 11.
Due to the pairing condition each cycle is labelled
by one and only one free index (i=1, 2, and 3). The
number of free indices in a BCS diagram is in gen-
eral simply the number of cycles, f, into which the
diagram can be decomposed. Hence the weight

FIG. 11. Cyclic decompo-
sition of a fourth-order BCS
graph.



872 L. N COOPER AND B. STOLAN

factor W, for an nth-order BCS diagram is

WEeS=N7 . (3.4)

We notice that a cycle connecting more than two
vertices will be characteristic of all but the ladder
diagrams. Such cycles represent EPV processes.
Hence we may conclude that all nonladder BCS dia-
grams violate statistics. The BCS diagrams may
therefore be classified as either ladder or EPV
diagrams.

The total contribution (weight factor and sign) of
an nth-order connected BCS diagram is

(-1)"™NT . (3.5)

And, as was stated in (2. 31), the sum of nth-order
connected BCS diagrams is

S =N" Sm)_lsm 1 S@ ... _1 "-zs(n-Z)
n= n N°n +FZ n N n ’

where the positive integers, S;*’, are now defined
as the number of connected graphs of the BCS to-
pology of order n with n — a cycles. As will be
shown later, the S'*’ can be obtained through a
detailed study of the possible combinations of the
BCS cycles. All BCS diagrams containing a cer-
tain number of cycles have the same sign and the
same weight factor. Each graph can therefore be
characterized by the degree to which it deviates
from a ladder graph. A pure BCS ladder graph of
the nth order has the weight N" while the related
nth-order BCS graph containing #» - a cycles (where
a is no larger than n - 2) has the weight

N"(1/N)* . (3.8)

We observe further that if any other of the un-
perturbed states, |¢,), had been used as the vac-
uum, Hpcg would retain its form and all the dia-
grams would be the same. The summation over
the intermediate states would result in the same
sums over independent indices as each k# is
coupled only to - k+. These sums depend solely
upon the number of hole and particle single-par-
ticle states, which are the same for all | ¢;) since
the number of particles in the interaction shell is
constant. Therefore S, is independent of which un-
perturbed state is used as the vacuum.

D. Convention for Labelling GBCS Cycles

We have seen that any graph can be decomposed
uniquely into cycles; each cygle is characterized
by a principal momentum =1, 2, 3...f and by the

FIG. 12, An elementary cycle.
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FIG. 13. Cycle connecting eight vertices.

pair momenta q;...d,, where s is the number of
vertices connected by the cycle. We label the lines
of a cycle as follows. The first lower line on the
left (going from left to right) is given the momen-
tum -i. The upper line with which it interacts on
the left is labelled i +d, (thus the total momentum
of thispair is §,). The lower line with which i +d,
interacts on the right (termination for both of them)
is labelled - { - d, - d, (thus momentum - §, for
this pair). In this way one can go through the en-
tire cycle until the last line,which is the continua-
tion of the first, is labelled with the momentum
~i-4-G -+ G,

For an elementary cycle, see Fig. 12, there are
two momenta d, and d;; these satisfy the condition

4;+d,=0 or d,=~q, .

Thus there is only one independent momentum.
More complicated cycles are characterized by the
pair momenta d;...d,. Only (s - 1) of these are
independent. This is demonstrated in Fig. 13,
where a BCS-type cycle with the principle momen-
tum T and the pair momenta §, q,. ..J, is shown.
Any cycle labelled in this manner gives a condition
on the pair momenta,

dy+dp+dg++ - +d,=0.

Thus the two apparently different labellings of the
bottom line are the same. If each of the pair mo-
menta is zero, one has exact pairing or a BCS
cycle.

E. Polygon Weight Factors for Phase-Space Sums

The GBCS Hamiltonian differs from the BCS
Hamiltonian in that the particles or holes are no
longer paired (- i¥, i4). It thus permits the inter-
action of an electron - it with all electrons i+d#.
Any “pairing” must therefore be the result of the
dynamics which for this model are contained in the
phase-space summations. These are dominated by
the requirement that the total momentum of any in-
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teracting pair be small enough so that there re-
mains a substantial volume of phase space into
which transitions can take place. From the func-
tion N,(q) in Fig. 5 it is clear that large values of
N,(g) and hence large weight factors only exist if
—iv and i +d+ are nearly paired.

Because N,(g) is peaked sharply at ¢=0, scatter-
ing of zero-momentum pairs becomes dominant in
higher orders. For an nth-order ladder graph,
for example, one encounters terms of the form

N z;q [Nl(q)]n- ! .

In sufficiently high order only the ¢ =0 term will
contribute.

While this extreme dominance of the scattering
by the ¢ =0 term in high order seems to be a fact,
it is exaggerated by the factor N,(g) as obtained
from the intersecting shells of the strongly coupled
model. The long tail of N,(g) which contributes to
the scattering only in the lowest orders is likely
also to be of no more general significance since,
for the states of large g, ({+d#+) probably do not
interact strongly with - {+ and can be treated as a
perturbation. However, it is difficult to see why
i+ should be strongly preferred to +1+d# if 1§1% 8.

We have for this reason chosen to lessen the
peaking of N,(g) and eliminate the tail in a model
in which N,(g) is replaced by a constant N,(0)=N
for a region @ of phase space centered about =0:

Ng) =N, |3|sq,
=0, otherwise

where

3
Q= 1=2—?T=;1§—. (3.7)

lil‘uo

The maximum momentum g, is of the order of 6 so
that

Q~5®
and the expansion parameter

Q_9°/3 (56 \°
N k%5 (k,.-) ’

F

(3.8)

In this model we allow the electron — i+ to interact
with the same weight with any given electron in the
sphere of phase volume @ centered at i*. We thus
exaggerate the interaction of — iv with those elec-
trons not exactly paired to it in order to see if this
destroys the qualitative results associated with the
pairing Hamiltonian.

INTERACTION... 873

FIG. 15. Construction giving Ny(q).

The phase sum associated with any cycle is the
sum over all 1, dy, dz--.Qs such that the momenta
-1, +T+61, -1-4,-3,-+, T+4,+d,+-- -4, are
each in the interaction shell.

Consider a cycle with four vertices as shown in
Fig. 14. Here the sum is‘to‘be takerl over all T,
Qi, ds, and gg such that -1, 1+q,;, -1 -§, -, and
1+G,+3,+d; all are within the shell of interaction.
The first momentum (labelled by the arabic numeral
-1 in this case) can be chosen freely from any of
the N hole states of spin +. The second is re-
stricted by the condition of intersecting shells as
shown in Fig. 15. -

The third momentum (- 1 - g, - q,) must be in
the interaction shell at the same time as 1+d,. If
these were the only two involved, the condition
would be given by the intersection volume of two
shells separated by ;. However, -T must also be
in the shell. Thus the momenta which simulta-
neously satisfy the condition that -1, T+§,, and
-1 -4, - d; all be in the interaction shell are
given by the intersection of three shells: the sec-
ond separated from the first by d, and the third
separated from the second by +d, (see Fig. 18).
Unless §; +{; is small the volume of intersection
goes rapidly to zero.

The fourth momentum 1 +d; +d, +, must also be
in the interaction shell. Thus (referring to
-1 -4, -d,) it will be in the intersection of two
shells separated by ds. All of the conditions are
satisfied by the volume of intersection of the shells
whose centers are separated by d,, d, and d, (see
Fig. 17). Given this we see that the shell centered

FIG. 16, Exaggerated drawing of three intersecting
shells.
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at D must intersect that centered at A as well as
that at C and that at B. This guarantees that the
two momenta 1 +§, +d, +ds and - 1 also lie within
the interaction shells; in general, the intersection
region is symmetrical in all of the momenta. The
phase polygon for the more complicated cycle of
Fig. 13 is shown in Fig. 18.

We write the phase sum associated with a cycle
of s +1 vertices as

N, (d,...d,) . (3.9)

For the ladder cycle (which has two vertices) this
reduces to our original N,(¢g) which as discussed
before is the phase space which is the intersection
volume of the two shells—and is a ring (or per-
haps more accurately a slightly flat radial tire)
which for §< g <2kp has the volume

N,(q)~Nb&/2q . (3.10)

The function N,(d, d,) is the intersection volume of
the three shells of Fig. 16. The intersection of any
two of these gives a radial tire whose plane bisects
the momenta (§,, d, or ds) and is perpendicular to
it.

Generally the intersection volume of the radial
tires is zero for most values of ¢ >0 and for those
few values of q;...qJ, for which it is not zero, of the
order of 6%, If all values of the pair momenta ex-
cept one, §, are very small, (3.9) becomes essen-
tially N,(g). With (3.7), N,(g) is written as

N(g)=N, |q|<gqo

=0, otherwise ; (3.11)

a similar approximation gives for the s +1 point
function

N(d,...q4,) =N, if the maximum distance
between any of the s +1
points of the phase polygon

is no larger than g,
=0, otherwise . (3.12)

An estimate of the magnitude of the summation
over pair momenta for a cycle with s +1 vertices

19#95*95
-1 FIG. 17. Phase-space
polygon for the cycle shown
in Fig. 14.

Qy*Q5*050q,=0

4
%2
a,+a49594 A998~ O
FIG. 18, Exaggerated eight-point phase polygon.
.2 N,@...d) (3.13)

y Qg
can be obtained by treating the variables {, as in a
random walk and replacing the condition (3. 12) by

the average condition that

s 2
@w=((Sa)) <d. (3. 14)
{=1 av
We then obtain
. Z;. N,@,:-+d,)=NQl, , (3.15)
Qe 'Q,
where
Q) =Q/s*? (3.18)

and Q is defined by (3.7).
F. Cycle Linkage and Reduced Polygons

We have so far analyzed individual cycles. Any
graph however is composed of two or more cycles
whose momenta are related to one another due to
the conservation of total momentum at each vertex;
thus the weight of a GBCS graph composed of sev-
eral cycles will depend upon the manner in which
the cycles are linked together. There is an in-
trinsic quasipairing in the scattering at each vertex
due to the phase-space function N,(g) [approximated,
for example, by (3.7)] so that it remains convenient
to label each cycle by one principal momentum; the
additional momenta are, as we have seen, the pair
momenta d,;, dg..-.

Consider the ladder graph shown in Fig. 19. All
pair momenta must be equal if total momentum is
conserved at each vertex; hence,

61 =62 =6 =64 .
The complete labelling of this graph is shown in

Fig. 9. There are altogether n+1=4+1=5 indices.
Looking next at the nonladder graph shown in Fig.
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20, we observe that two d indices are now needed
to label the diagram. At the same time the number
of principal momenta is reduced by one. The total
number of indices needed to label nth-order graphs
in general is n +1.

This may perhaps most easily be seen as fol-
lows. The difference between the ladder and non-
ladder graphs in Fig. 19 and Fig. 20 is the way the
spin-down hole lines are connected. The nonladder
graph can actually be obtained from the ladder
graph if the vertices in cycle y, and y, are con-
nected by the spin-down lines as shown in Fig. 21.
Comparing the resulting cycle with the same cycle
shown in Fig. 20, we see that the momentum in-
dices must satisfy the equation

§+§3=T+(-1.1
or

5=1+q4,-4d, . (3.17)

As a result there is one less principal momentum
but one more pair momentum, d, in the phase-
space sum. Similar arguments apply for all
graphs.

From this it is clear that associating one prin-
cipal momentum { and v pair momenta d,. . .§, to

FIG. 20. Cycle analysis of a non-
ladder GBCS diagram.
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1'q1

= FIG. 21. Construction of a
nonelementary cycle (b) from
two elementary cycles (a).

each cycle with v vertices results in a redundant
number of momenta. For each cycle we have the
condition

(3.18)

and at each vertex a condition from conservation

of momentum (see Fig. 20). The use of these con-
ditions for any nth-order connected graph composed
of f cycles leaves us with the f principal momenta

q1+62+"'av=0

i...i, (3.19)
and n - f+1 pair momenta

dy...0msn (3.20)
now distributed among the f cycles. The total

weight of a graph is therefore given by the product
of phase polygons obtained for each cycle with the
number of pair momenta reduced to its proper
value. Phase polygons for which such a reduction
has been carried out are called reduced polygons.
We now discuss the method of reduction and of
obtaining the total weight.

In Fig. 22 the cycles of the nonladder graph of
Fig. 20 are shown labelled. The original polygons
for these cycles are shown in Fig. 23(a). Requir-
ing conservation of momentum at each vertex, we
now find

1+q,
1+Q,*a,*
4°Go*Q '
2 °3 '
|
|

H [l
! -1 'Ch‘qZ

Po1 o istedyazag
& 4y -9, -4,
249,

FIG, 22. Three cycles
containing redundant pair
| ! momenta.,
|

2 -2-agqg

349,

L
3 39
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(b)

FIG. 23. Original polygons (a) and reduced polygon (b)
for the cycles of Fig. 22.

ql’—'_ai ) 63=‘az ’

ds=d; , dr=d, (3.21)
This reduces the four-point phase polygon to the
three-point polygon shown in Fig. 23(b). Since
ds=@, and - d,=d,, the restrictions implicit in the
two-point polygons of Fig. 23(a) are already con-
tained in the three-point polygon, which restricts
permissible d values more severely than the two-
point polygon. The two-point polygons therefore
add no new restriction so that the total weight is
given by the three-point reduced polygon. [The
important idea is that if a pair momentum occurs
in two polygons, one with a larger number of ver-
tices than the other, the sum over this pair mo-
mentum (restricted in any case to /gl <gq,) is more
restricted by the larger polygon than the smaller.
Thus any restriction imposed by the smaller poly-
gon is redundant. If the two polygons have the
same number of vertices, the restriction imposed
by one is duplicated by the other.] Using this
technique the weight factor for any GBCS graph can
be obtained.

The ladder diagrams for example are character-
ized by 7 principal momenta and one pair momen-
tum. Using (3.7), the summation over phase space
therefore gives

z 1 =N4? [Ny(g)]™?

<12, .13
143,243+ o80Q
all in shell

=N" 2 1=QN".

IQ‘I‘GO

(3.22)

The nonladder graph of Fig. 22 when analyzed
gives the reduced polygon of Fig. 23(b). This re-
sults in a phase-space sum:

L T N@d) =N T N@, ) (3. 23)
33 4 q,

Within the statistical approximation [(3.13)-(3. 18)]

we obtain

Nz_Z: Nz(iliz)=§1m N3Q2=QN4<%>-Z—1375 (3.24)

Ql Qz

In Appendix B the techniques outlined above are
used to calculate the weight factors for graphs of
all orders composed of n -1 and n - 2 cycles, i.e.,
the weights associated with S’ and S2’. We find
in general that the weight of an arbitrary graph of
order n with » — o cycles can be written

QN"(Q/N)flg],

where f[g] is a number associated with each graph
such as 1 for the ladder diagrams or (1/2)%2 for
the graph discussed above. It is the same number
for large classes of graphs. (All of the ladder
graphs have the same f[g] as do all of the graphs
with n - 1 cycles.) In the limit that n—e, f[2]
becomes a function only of . In Sec. V we treat
two limiting situations:

(3.25)

flel=1, (3.26)
the Q/N model, and
flgl=f(a), (3.27)

the f(a) model.

IV. ANALYSIS OF STRONGLY COUPLED BCS
HAMILTONIAN

The topological identity of the graphs generated
by the BCS and GBCS Hamiltonians makes it pos-
sible to write the expressions of interest in the
GBCS case in terms of partial sums over related
classes of BCS graphs. We can then obtain the
spectra for the GBCS system by various analytic
distortions of the BCS spectrum. To achieve this
it is necessary to analyze carefully the strongly
coupled BCS system; this we do now.

A. Diagramatic Analysis

Using the cycle-decomposition method, we found
in Sec. II the following expression for the sum
over all connected BCS diagrams of order »:

— n"-z (a) (_ (] l ¢
sn‘N ES" ( 1) N

a=0

(4.1)

S!%’ ig the number of graphs of the BCS topology
of order n with f=n - a cycles; it is a positive
number independent of N (the number of particles
of one spin) or V (the magnitude of the coupling
constant). As mentioned before, S\°’, the number
of ladder diagrams of order n, is easily seen to
be S’ =(n - 1)! However, the numbers S$'’,

S, ... can only be found through a detailed study
of the number of possible ways to form nth-order
BCS diagrams consisting of n -1, -2, ... cycles.
In Appendix A we outline the calculation for S’
and S?’. The results are
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s,‘,“:z('é)(n-z)u";zn! : (4.2)

s [4(2)+48<§)+96(2)](ﬂ—4)!
+ [84(2 )+784(g)+1680(’7‘)
2()("55) e (G)('3)

+%—0 (Z><n24>](n—5)! +46(n -4) .

(4. 3)
For n=4,5,6, and 7 this formula must be inter-

preted with caution. For n=5, for example, aterm
like

96(2)(71-4)!

does not contribute since this term, as shown in
Appendix A, comes from the placements of a cycle
covering six vertices, and there are only five ver-
tices in a fifth-order graph. For n=> 8 we find

s’('z)=n!(rs_§n3_ﬁna+mn_{s). (4-4)

For large values of n

o_1
Sn = n! ,

s,‘,“~§n! , (4.5)
5n°

2). 9% ]

M 108 "' -

For a <, the S{*’ appear to be an increasing
sequence of numbers satisfying

Sias) /glad =2 (4.8)

From these results we see that for any finite N
the nonladder graphs will eventually dominate S,
The sequence

n2 @ 1\*
sevr S (-3)

as=0
is therefore dominated by S\°’ only as long as
n< (3N)V/2 4.7

Beyond this, all of the terms of (4.1) contribute.
Since the terms oscillate in sign, the sum depends
rather delicately on the magnitude of all of the
terms. From this the effect of the exclusion
principle is clearly visible. No matter how large
N is, if one goes to sufficiently high order
[n5 (3N)'/%] the exclusion of phase space due to the
Pauli principle becomes of dominating importance.
The subsequences
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D s e ) (4.8)

n=1

can easily be summed when S}*’ are known. For
a=1

. (n=2\, 1 3
B”“’“E( 3 )y “3a—y)?

and for o = 2B (y) contains terms of the form

s

(l—%mwpolynomials in y.

Each of these nonpolynomial terms and (as has been
shown previously) also B‘” (y) has a singularity at
y=1. For a=1 and 2, however, the singularities
are poles. We conjecture that for all @>0, B‘®(y)
has a pole of some order at y=1. In the sum over
a, however, it is very likely that this pole is dis-
placed.

B. Exact Solution
The energy spectrum and degeneracies for the
strongly coupled BCS Hamiltonian have been cal~

culated by Anderson® and by Thouless.* They find
the following:

E,=-V[N3+N-r(2N-7+1)] , (4.9)

L NN -2 +1)
Tyl (2N=-r+1)! ’

(4. 10)

where E, is the energy of the 7th level and d, is the
number of degenerate levels at that energy. The
lowest level of this system is

Ey=-VN(N+1) (4.11)

and is nondegenerate while the highest level is
Ey=0 (4.12)

and is (N +1)"*[(2N)!/(N!)?]-fold degenerate. This
is a spectrum characteristic of a classic super-
conductor: a nondegenerate vacuum, the first ex-
cited states removed from the vacuum by the en-
ergy gap

2A=2NV, (4.13)

and the higher excited states becoming more and
more degenerate until the highest level which has
a degeneracy equal to (N +1) ! x(the total number
of states). The spectrum is shown in Fig. 24,
The total number of states of this system is

ZN“,d (2N)!

=N (4. 14)

r=0
which is the number of states counting only the
“pair” excitations—the excitations of the system
which correspond to configurations of the noninter-
acting system in which single-particle states are
occupied in pairs (if kt is occupied, - k+ is occu-
pied also). The total number of configurations
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FIG. 24. Energy spectrum for Hpcg in the
strong-coupling limit.

which result is that of N particles in 2N available
states. This is just

2N)1/(N1)? .

“Single-particle” excitations are included in this
spectrum in a completely passive way. Since the
Hamiltonian connects only “pair” states, any single
particles do nothing further than occupy phase space
and so reduce the number of possible transitions of
the pairs.

If ¢ is the number of single-particle excitations,
the number of pair states available is reduced to

2N -gq,

while the number of pairs is reduced to
N- %q .

The energy of such excited states is
,==V[(N-3¢) N=3g+1)=7r(@N-g-7+1)] .

The lowest energy of the state with two excited
single particles (g=2, =0) is - NV (N - 1) which
is just the energy of the state with no single-par-
ticle excitations and one excited pair (=0, »=1).
This is analogous to the energies of pair and single
excitations in the BCS theory.

Using the results of Sec. II and (4. 1), we have

el (3) 5

= (po| e #ncst [ p)

=20 [{go| tm) | %t (4.15)
where | ¢,) is the unperturbed vacuum defined pre-
ceding (2.10) and Hpcg above is the BCS strongly cou-
pled Hamiltonian (2. 13). The eigenstates of Hgcg are
|¥m?, and E,, are the corresponding eigenvalues.

AND B. STOLAN 4
Introducing
y=NVt , (4.186)
€n==En/NV, (4.17)
we have
1 a n
exe[ Dt 02(§ ) 2 ] D l<oolum e,
na nl m
(4.18)
where €, is seen from Eq. (4.9) to be a positive
number ranging from 0 to N +1.
In Sec. IIIC it was shown that S, is indepen-
dent of the unperturbed state | ¢;) used as a vac-
uum. We can from this conclude that
| (o] ¥m? | =const
- 1 _(N1)?
" number of states (2N)! ° (4.19)
We therefore rewrite the sum on the right-hand
side of (4.18) as
N
2 a,e%r (4. 20)
rs0
where
4. -degeneracy of the 7th level (N1}
"~ total number of levels  (2N)!“"
(N1 (2N -27+1)
ST @N-7+DI (4.21)
From this it follows that
N
za,=1. (4. 22)
r=0
This implies that
S§2=8,=0. (4.23)
Since further
9 N N
—2 d,e*r| =2t
ay r=0 ya0 7=0
1 1
Y7 (no. of states) (trace)=1,
(4.24)
we have
$,=5;"=1. (4. 25)
It is convenient to define
N
G(N,y) =2 d,e”r , (4.26)
r=0
S(¥,y)=InG(N, y) . (4.27)
We then can write
(o) (. o 1‘_ “ _L"__
%s, (-=1) (N py =8V, y) . (4.28)
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Using the known expressions (4.9) and (4. 10) for
E, and d,, respectively, both G and G are known
functions of y and N. The series on the left-hand
side of (4.28) has a nonzero radius of convergence
iny. S;*’ can be calculated from Hycg by the
methods of Appendix A.

V. ANALYSIS OF GBCS HAMILTONIAN
A. f (a) Model

For the GBCS Hamiltonian the most general
weight of a connected graph of order n with n -«
cycles is

QN"(Q/N)*f[2] .

The functional f[§], where g refers toaparticular
graph, canbe calculated using the methods of Sec. III
and Appendix B. In Appendix B, f[#]is calculated ex-
plicitly for all graphsfor whicha=1anda=2. It

is found for these values of a that in the n—« limit
f[£] depends only on @, and it can be seen that

this is the case for all values of « for large enough
n. This leads us to define what we call the f(a)
model—where f{g] is a function only of o:

f8l=f () .

In this model the contribution of the sum of all
graphs of order n composed of » — a cycles is

QN"$,* (- 1)* (@/M)*f () ,
so that
1n((B0] ] 99 =10(Z |<B0] )| 22"
-0Zsr (- 07(2) 7 (e 2
(5.3)

This can be generated from the analogous expres-
sion for the BCS case by first making the substitu-
tions

(5.1)

(5.2)

N-(N/Q)e”, V~(VQ)e™® (5.4)
in (4. 28):
(@) of 1Y 3"
§(V, ) =InG(N, y) =55 (- 1) (ﬂ !

If we multiply this with Qg(p) where g(p) is defined
by

fla)= focg(ﬁ)e'“’dp (5.5)

and integrate, we obtain for the right-hand side
" . .

o @ap S -1 () eree 2

° ne N n!

Interchanging the summation and integration yields

T (-0 (F Y@

(5.6)

(5.7)

All of the operations are valid if g(p) is compact,

g(p)=0 for p> p .y In that case 0< N~ (N/Q)e? <
and the sequence (5. 6) is absolutely convergent.
The justification for these operations will be given
elsewhere where we discuss the analytic properties
of Gand §. From (4.26) and (4. 27) we have

N
s(N,y)=1n(2a,e”r*"’) :

r=0

and we may now write

(L (ol Ym) |2 e*m) =@ ["2(p)dp §(Ne®/Q,y) .
(5.8)

[In this section E, and €, refer to the energy levels
of the GBCS system (€, = -~ En/NV). To distinguish
these from the corresponding energy levels of the
BCS system, we write the latter in this section al-
ways as €x(N) or €, (Ne?/Q).] To evaluate this we
consider the asymptotic limit y - . In this limit
the function G is dominated by

N
1im(Z) a, e”‘r)-—doe“o , (5.9)
y=o \ r=0
so that
lim G(N, y) =Indy(N) +y €(N) .
yeo

To identify the various levels we write

S(N, ) =Indo(N) +y€(N) +1n< 1 +ZN‘I d, (N) eyA,(m)

r=l

(5.10)
where d, is the degeneracy of the rth level,
_a,(N) _(2N)! (2N - 27 +1)
d'(N)-do N)” #1@N-7+1)1
and
A, (N)=€,(N) = (N)==2r+(»/N) (r - 1) . (5.11)

We therefore obtain

2
In (|{do| %) |2) +y€ +ln( ,: %%g:%:;—:—z e’°m>

=Q£wdbg®){lndo<N—5f )W%(N%’)

N
+1n[1 +2,d, <£V—g—f)ew,weﬂ/m] } , (5.12)

r=1
where
Om = €m— € - (5.13)
In the y -« limit the first two terms give
In(|<¢o|#)|2) =@ [ dpep)Ind, (Ne®/Q) (5.14)
and
veo=Q ["dpg(p) [y (N/Q) e +y]

=y [Nf(-1) +@f (0)] . (5.15)
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Since f(0)=1 from the normalization of the ladder
graphs, we have for the ground state of the GBCS
system in the f(a) approximation

€=Nf(-1)+9Q

or
Eo=-VN2[f(-1)+(Q/N)] .
We now recall that
#,(N) = (N1)?/(2N)!

Evaluated by Stirling’s formula in the limit of
large N this yields

ao(N)~ (aN)M2 (3% .
We therefore have
Indy (Ne®/Q) =z 1n(nN/Q) + 3 p - (2N/Q) e’ In2 .
(5.19)

(5.16)

(5.17)

(5.18)

Substituted into (5. 14) this yields

The first few terms are

1>

In|(¢o | U0} |2=Q [ dpe(p)Ina,(Ne’/Q)

=3Qf (0) In(7N/Q) - 397 '(0)
-2Nf(-1)In2 . (5.20)
Since £(0) =1 we have

In| (o | o) |?=2QIn(7N/Q) - 2Qf "(0) - 2Nf (- 1) In2 .
(5.21)
From this it follows that

Q N . 1
== (mb——f (o)) - onig 0l (@0l 902 ] -

(5. 22)

In the asymptotic (y - ) limit the other energy
levels can be separated and identified. The ex-
pression of interest is

(1+dierise )21+ 0der 2L gt oo, g,

Q@ -1)(Q-2)
* 31

Since /N <« 1 we have approximately
d,~(2N/Q)e* ,
This gives

(1+d,e*®1+ ¢

+-§-N’e”e'°’ + ZNZ(N/Q) e”e'“’"""/”""+-§-N(N/Q)‘ e e-ww(eo/mr# I

Therefore

° 2
k" g)ap (1 +2Ne? et s )=1n( 2 {Bal

dy ~2(N/Q)%e® |

)9 &1+ 2Ne? e L AN 22 oV 4 ON(N/Q) e 49 g~/ Nhe™?

fo”g(p) In(1 +d,e**1+dpe*®2++--)%p . (5.23)

dfe’“l +Q(€2>—!_1) dldz ey(Al«'Az) + steyAs PPN (5. 24)
dy=+(N/Q)%e® . (5.25)

(5.28)

e’om)Eln(l +21a13,°l +E=a2e’°2+- ") , (5. 27)

where by 3, a;e*® we imply a sum over the states clustered about the ith level. Expanding a logarithm of

the form

In(l+x, +xp+xg+°++) ,

where x,x, is of order x, if i +j =k, and sorting out powers, we obtain

1 1
In(1 +x1+xa+x,+~--)=x1+x2-§x§+xs—§2x1xz+%x?+-~-

(5.28)

Now expanding the logarithm in the integral on the left-hand side of (5.27) we have

f:g(p)dp{e’e’z" 2N+e”e""[2N2+2N(N/Q)ea"°/”"" _ -‘2‘4N"‘]

+e3Pe‘e)’ [_ﬁ_N3+2N2 (N/Q) eZy(Q/N)e'P +_3_N(N/Q)2e6y(°/h')e"

—4N3 - 4N2(N/Q) ezy(Q/N)e'P +%8N8]+O(e-8y)- . -} .

With integration and cancellation of terms this gives

(5.29)



|

e 2Nf(-1)+e"* 2N (N/Q) F52(»)

+e ¥ [$ N (N/Q)?Fyg(y) — 2N3(N/Q) Fg(y)] + higher-order terms,

where we have defined
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All of this is equal to the right-hand side of (5.27) which when expanded gives

In(1+2; 216" +205a56%%2++ + ) =20, a18"™ +255a02%%2 = $(2; a1e*™)?

Equating the various orders, we have

so that

2a,=2Nf(-1) and 6,=-2,

(5. 30)

Fes®)= ["g(p)eme* M ap (5.31)
+27304€"%8 =03 Y a,a,e% %1% + (25, a, €*®1)® +higher-order terms. (5.32)
Siageti=e® aNf(< 1), (5.33)

(5.34)

(5. 35)

2020;e*%2={2N (N/Q) Fp(y) + 3 (4N2) [f (- 1)]F}e v ,

2isage”®s=e® {AN2(N/Q)f (= 1) Fu(y) +4N°[f (= 1)]* = 38N °[F (- 1)]* +$ N (N/Q)* F5q(y) — 2N 2 (N/Q) Fyo(y)}

= HN (- D+ 4N W/Q)[f (- 1) Fae -

The ground state for the f(a) model is given by
(5.17). The first grouping of excited states is ob-
tained from

2na,e®1=2Nf(-1)e®

so that we have a level at

E,=E,+2NV, (5.37)
with a relative weight of
2
5,0 o1y . (5. 38)

Lol o)1

We see, therefore, that there is a gap in the energy
spectrum of 2NV between the ground state and the
first excited states.

The higher groupings of states are spread about
a dominant level by the function

Frs(v)z f;ng(p) erﬁevs(Q/N)e"ﬁdp ,

where

(5. 39)

0<s(Q/N)e*<sQ/N.
We recall that
f@)=["g(p) e ap
and that
fO)=[Tgp)ap=1.

The function F,,(y) may be regarded as spreading
states originally degenerate by the amount sV@.
Consider, for example,

(5. 40)

%Fsz]+§' N(N/Q)ste(y)} .

(5. 36)

|

2naze’2=25, %ﬂ&%%l: e'r %’
Gl P!
={2N (N/Q) Foa(y) +2 4N [f (- D} e® .
(5.41)
The highest level of this group is given by
(2-€)y=-4y,

and recalling that y =NVt and €, =-E,/NV, we
have

E M@t _ g 4NV ., (5.42)

Therefore, the highest level of this second grouping
of states is removed from the ground state by 4NV.
The lowest level of this grouping is

Ealow.“ - Eo =4NV— ZVQ .

(5.43)

Thus, this second grouping of levels is spread be-
tween

Eg+4NV and Eo+4NV(1-3@Q/N).

As long as Q/N <« 1, this group of levels is sepa-
rated from the lowest excited states by an energy
of about 2NV.

In a similar manner one finds the third grouping
of levels spread between

Eq+6NV and E,+6NV(1-@Q/N).
The lowest part of the spectrum is shown in Fig. 25.
B. Q/N Model

One interesting limit occurs if we set f[g]
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FIG. 25. Lowest part of
the energy spectrum for the
f(a@) model.

2VN

=f(a)=1 as in (3.26). This is equivalent to letting
Ns(ql. . .63)=N for lal‘ o o Iﬁs'sflo
(5. 44)

In doing this we take no account of the reduction in
weight produced by the higher-order polygons.
This is the simplest approximation we make in
summing the graphs generated by Hgpcg; €ach
electron - i+ interacts equally with all of the elec-
trons in the sphere with @ states of spin ¢+ centered
about i in such a way that the weight contributed by
one s +1 point polygon (or a cycle of order s +1) is
just NQ°. We call the model so defined the Q/N
model.

It has previously been shown that a BCS ladder
graph of order »n has the weight N". An nth-order
BCS graph containing n — a cycles (where « is no
larger than n - 2) has the weight

N"(1/N)* .

=0 elsewhere.

In a similar fashion for the /N model, a ladder

graph of the nth order has the weight
QN", (5.45)

while the nth-order graph containing 7 -~ a cycles
has the weight

QN"(Q/N)* . (5. 46)

This leads to an expression for the sum over con-
nected graphs of order # for the Q/N model:

P T AT A YT
S,=QN [s,‘, _(N>s"1 +(N) s

n-2
PR (_%) S,(,"-Z)], (5.47)

compared with the BCS expression

BCS n ) 1 1) 1 z (2)
S, °=N Sy - N Sy + N S

oo <_%’ )"'zs;".-z’]. (5. 48)

Putting these into (2. 23) and (2. 24), we obtain for
the vacuum expectation value of the U matrix for the
two cases

o

<U(-z‘t)>0=exp[2 (—%)aBé""(NVt)] , BCS

a=0
(5.49)
=exp[ Q i <—% )a B (NVt)] , GBCS

a0

(5. 50)
where

© ()

By*' (NV) =25 S;;, NV (5.51)
n=l

and
Si¥)=0 for a>n-2.

The sequence can now be obtained from the
reference strongly coupled BCS sequence by making
the substitution

N-N/Q, V-VQ, (5.52)

and multiplying the series by @. Since @ is a posi-
tive number larger than 1 (Q =1 is the BCS case),
the transformation leaves NV and therefore y =NV¢
unaltered and maps the real line (excluding 0 and
=) into itself. Hence the energy spectrum for the
Q/N model can be expressed in terms of the spec-
trum for the strongly coupled BCS Hamiltonian.

We may also obtain the spectrum by setting f(a) =1
in Sec. VA.

We find
T (G| )| 2e*m = [T, 2, N/Q) &M @,
(5.53)
where as before
€, (N)=N+1-2r+(r/N)(r-1). (5. 54)

The matrix element |{¢,!¥n)!%, by an argument
similar to that in Sec. IV, will be proportional to
the degeneracy of the mth level of the exact sys-
tem; therefore both the energy levels and the de-
generate structure can be evaluated from (5. 53).

With the methods described above we obtain for
the ground-state energy of the /N model

Ey=-N2?V(1+Q/N) . (5.55)

[This is to be compared with the ground-state en-
ergy in the strongly coupled BCS model of
- N2V (1+1/N).]

The lowest energy levels are given by following
expression:

Epn=Eq+2VN(lg+ L+l +1g++++)

~2VQ (I, +2l,+3lg+---), (5.56)
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where Iy, I, I,... are integers which satisfy
(5.57)

l02l12l22l3>"‘ .

There is a first grouping of excited levels at

E,=E;+2NV, (5.58)
with the weight

2N(1-Q/2N), (5.59)
and a second grouping of excited levels at

EP™** =E,+4NV (1 - 3Q/N), (5. 60)
with the weight

2N(N/Q)(1-3Q/N), (5.61)
and

Ejiehest _E 4+ 4NV, (5.62)
with the weight

(4N%-4NQ +@*) (1-1/Q) . (5.63)

The Q/N spectrum is thus spaced in discrete units
over the region of spread in the f (@) model. The
lowest part of the spectrum is shown in Fig. 26.

In the limit of @ =1, the GBCS model in the Q/N
approximation gives, as expected, the BCS result.
For

1/N<Q/N«1,

one would expect that the ladder and lower-order
diagrams would be underestimated; a more ac-
curate estimate of the contributions of higher-

Em~E° A
BVNE==——0 b0 4,,, ,
3 F—poa
6VNf————edog 4,

3
4VN'E_‘ 2va
2VNpb—————

o!
FIG. 26. Lowest part of the energy spectrum for the

Q/N model.

order diagrams should take into account the reduc-
tion in the higher-order graphs due to the reduced
contribution of the polygon functions N, (d;. ..d,).
This is accomplished in the f(a) model described
previously.

C. Estimate of f(-1)

The function f (a) decreases monotonically with
increasing o and f(0)=1. The analytic continua-
tion of f(a) onto the negative real axis gives both
the ground state, excited states, and degeneracies
for the f(a) model. In particular f(- 1) determines
the ground-state energy. Since f(a), in principle,
can be calculated for all.positive integral values
of a, f(a) is determined; we need the analytic
continuation of f(a) into the left half-plane. This
will always be possible since

fla)= ["glp)e*ap, (5. 64)

with g(p) =0 for p> poa,. in order that Ne?/Q <,

In absence of a complete knowledge of £ (a),
bounds on f (- 1) can be obtained using a type of
sum rule with a limited number of assumptions in
the following way. We have previously obtained

9 (™)) oL
F=D= (1n o~/ (o)> -~ s ing 0l (@0l %) |2

(where it is assumed that the ground state of the
interacting system is nondegenerate).

The ground state of the GBCS Hamiltonian can
be expanded in states of the “unperturbed” system
as

[ %) =2m | Om) Dm0 (5.65)

where the sum goes over all states connected to

the “unperturbed” vacuum by the vertices of the

GBCS Hamiltonian. This guarantees that all the

states |¢,) for which (¢, |%,)# 0 have zero total

momentum as well as equal numbers of particles
and holes of up and down spin:

(Dm| 01| Om) = (D 51D D) = (Dm|BTRY| D)

=G|k Dm) - (5.66)

For the strongly coupled BCS Hamiltonian, any
eigenstate state |¢;) is a sum over all of the pair
states, each term having equal weight; only the
phase varies:

‘wl>=( 1

number of pair states

1/2
) E e””l ¢/> .
i
For the ground state, y;;=0, so that

2
<ol o) | 2= L =)

" number of pair states (2N)! °
(5.67)

For the ground state of the GBCS Hamiltonian we
write




884 L. N COOPER AND B. STOLAN

t¢o>= Z;

BCS pair states

a(l¢i>+ 2

other states

Bild’i) ’

(5.68)

where presumably in analogy with (5. 67) the a;
are equal and |B;l<la;l. We then have

(@] %o) = g

(the component of the “unperturbed” vacuum in the
ground state of GBCS).

To obtain a lower bound for f (- 1) we want the
largest possible value of |ayl. We obtain this if
we couple |y,) only to the BCS-type pair states.
We know (from the variational nature of the BCS
ground state) that | ) must be coupled equally to
| ¢o) and to all other BCS-type pair states |¢,).
From this we can conclude that if the 8;=0 (thus
that 13,) is just the BCS ground state),

1/2
(9ol vo) = a0 = (number of BCIS pair states )
= (%’J—;i )m . (5.69)
It then follows, using Stirling’s formula, that
1n|ao|a=ln%—;;~%lnnN—2N1n2, (5.70)
so that
fl- 1)3%1—1-2- (m%-f’(o)) —i:,”gz +1. (5.71)

Since 7'(0) is not large compared with In(7N/Q)
[we can determine this by inspection since f(0)=1
and we are able to calculate £(1), (2), etc.]and
InTN <« @, we have

Q N

4N1n21n6— . (5.72)

f=1)21+

To find an upper bound for (- 1) we need the
minimum value of In|{(®,! )% This we obtain if
we let |,) be constructed from an equal weighting
of all the states to which |¥,) is connected by the
vertices of the GBCS Hamiltonian. From (5. 68)

@ol)=1= & la,? + T |8?
T ke

If all the | a4l and | B;| are equal, we have
lag|2=1/C, (5.73)

where C is the total number of configurations
which are connected to |3, by the vertices of the
GBCS Hamiltonian and which have zero total mo-
mentum. But this last expression is larger than
that obtained if we assume that all of the GBCS
configurations even those not satisfying (5. 66) or
whose momentum is not equal to zero are con-
nected equally with |¢,). The total number of
GBCS configurations is

£

[(em) /(N2
so that if | a;! =1B;| =const, we have
|| 2> [(N12/ (N1,
In| ao | =1n|{o| )| 2R InTN - 4N 1n2 ,
so that

f-1s<2+ Q1,1 (5.174)

4NIn2 @

Therefore, we can reasonably bound f (- 1) by

1 Q

+m—2' (5.75)

N <9, 9 N
In 0 f( 1)”2+4N1n21nQ .

Another method by which we might estimate
f(-=1) is to consider the matrix element

(ol ¥y )12
S Lol b oy (r(-1) - o/,

1{¢po! o)
where we have included the term of order @/N
omitted in the computation of the entire spectrum.
In the strongly coupled BCS theory

(gl )12
AL SN -1,
b

(5.76)

In the GBCS model the ground state has a nonzero
matrix element with all of the first excited states
in which an excited pair has zero total momentum
and the coherent background has zero total momen-
tum (these are the excitations of the BCS case) and,
in addition, there are matrix elements for which
there are two excited “single” excitations of non-
zero momentum against the coherent background

of nonzero momentum such that the total momen-
tum (two single excitations +coherent background)
=0. Presumably more than two excited “single”
excitations lead to higher excited states. If we
assume that these latter matrix elements are
small compared to the first, we obtain

2N[f(-1)-2Q/N]52N-1 (5.77)
or

f(=1)31+(Q-1)/2N,

which is consistent with (5. 75).

(5.178)

VI. CONCLUSION

The following assumptions were made in arriving
at our results: (i) restriction of the Hilbert space
under consideration to the interaction region, (ii)
replacement of the kinetic-energy operator by its
expectation value (7-( 7)), (iii) replacement of
the most general two-body interaction by a spin-
independent constant over the interaction region,
(iv) extraction of the GBCS graphs from the totality
of graphs generated by the strongly coupled Hamil-
tonian, and (v) approximation of the weight of subsets
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of the GBCS graphs according to the number of
cycles of which they are composed: the f(a)
model.

We regard (i)-(iii) as simplifications of the full
many-body problem which may change results in a
quantitative way but are not likely to affect the
qualitative results. It seems probable that a limit
in which (i) is rigorous can be defined; (ii) cer-
tainly changes the numerical results and may alter
the analytic properties of some of the interesting
functions, but probably does not affect the quali-
tative nature of the results; and (iii) is relatively
trivial and is made primarily for simplification.
Altogether the system with the restrictions im-
posed by (i), (ii), and (iii) is of great complexity
and retains most of the interesting properties of
a many-fermion system; the results obtained can
probably be generalized without these restrictions.

The approximation implied by (iv) is more seri-
ous. We regard this in the following way: The
GBCS graphs are distinguished from the totality
of graphs generated by the strongly coupled Hamil-
tonian by the fact that the vertices of which they
are composed contain contributions when the mo-
mentum of the pairs being scattered approaches
zero. In the limit that the pair momentum ap-
proaches zero, these are the only graphs that
contribute; if one believes that the problem is
dominated by the scattering of electron pairs of
small (but not necessarily zero) total momentum,
these are the graphs that dominate. Thus the
GBCS graphs are a generalization of the usual BCS
grg.phs in which one is not restricted to the exact
- kv, k4 pairing.

The dominance of low-momentum pair scattering
itself would be a consequence of the smallness of
what we believe is the relevant parameter of the
problem,

Q/N~(5/kF)2 ,

where 6/ky is the ratio of the thickness of the in-
teraction shell to the Fermi momentum. Of all the
graphs generated by the full strongly coupled Hamil-
tonian, the ladder graphs are of the lowest order in
this parameter: (Q/N° However, by the arguments
of Sec. II, it is clear that the ladder graphs by
themselves will not suffice. We can then regard

the graphs which constitute the GBCS system as a
completion of the ladder graphs—a completion

i FIG. 27. Aprocess which
| is not generated by the GBCS
E Hamiltonian.

which allows us to calculate the matrix elements
of the U matrix in a conventional way, without the
inclusion of exclusion-principle-violating pro-
cesses, with errors of the order Q/N.

The approximations contained in (v) which lead
to the f (@) model no doubt alter the results and
can probably be improved in various ways, but we
feel that this yields a fairly accurate estimate of
the level structure.

Many of the graphs generated by the vertices
omitted in the GBCS Hamiltonian will serve only
to renormalize the various propagators and ver-
tices. There will, however, always remain pro-
cesses which are not included in the GBCS Hamil-
tonian such as those shown in Fig. 27 which will
generate another branch of excitations. For a
neutral Fermi gas it is known that these will re-
sult in collective modes where the lowest excita-
tions are not separated from the ground state by
any energy gap.

The graphs included in the GBCS system seem
therefore to produce a qualitative account of the
single-particle part of the spectrum of a many-
fermion system subject to a weak attractive inter-
action. Although the ground state of the GBCS
system is lower than that of the BCS system (con-
sistent with the variational nature of the BCS
ground-state wave function) and the higher excited
states are spread about the BCS levels, it is
striking that the energy gap between the ground
state and the first excited states remains exactly
as it is in the BCS theory. It therefore seems
reasonable to conclude that the inclusion of the
interaction between an electron - k+ and the large
number of electrons in the sphere surrounding k4
does not destroy this most characteristic feature
of the superconductor spectrum.

APPENDIX A: EVALUATION OF S{!) AND s{?)

We have seen in Sec. Il that a given graph can
be decomposed uniquely into certain cycles. If
all graphs in a given set of graphs can be decom-
posed into certain typical cycles, the number of
graphs in this set can be found as the number of
possible ways these typical cycles can be combined
to form connected diagrams. Hence the counting
problem becomes the problem of finding the typical
cycles and their possible combinations. Using this
approach we now find S{!’ and S2’.

Evaluation of S{*’. S\ is the number of topo-
logical nonequivalent nth-order connected diagrams
which are composed of (n - 1) cycles. If we write
V1, Vg V3, . .V,-; fOor the number of Gaudin decom-
posed vertices being connected in these (n - 1)
cycles, we must have

Vy+Vp+Vge 0, =20, (A1)

in such a way that
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FIG. 28. Cycles connecting four vertices.

V=VUp=0 " Upp=2, Upy=4 (A2)
From this we see that out of these cycles (n - 2)
are elementary cycles which each connect two
vertices, and one is a cycle connecting four ver-
tices. The cycles in such a graph can therefore
be characterized by a number series containing
one 4 and (- 2) 2’s as below:

422 ...2.

The cycles which connect four vertices, are shown
in Fig. 28.

S will be equal to the number of ways we can
combine the cycles in Fig. 28 with the (n - 2) ele-
mentary cycles into diagrams. In order to sim-
plify the counting problem we will exploit certain
graphical symmetries. A BCS diagram represents
a singlet interaction. A spin-up line will there-
fore never be connected to a spin-down line, and
the diagram will as a result be divided into an up-
per and lower part. Hence for a given diagram,
ladder diagrams excluded, there exists another
topological nonequivalent diagram where the upper
and lower parts are interchanged as compared to
the first one. This is shown in Fig. 29. The only
difference between the cycles from the two dia-
grams is that the upper and lower parts of the non-

1
)

s — H !
—— @'
(a) (b)
! \ i i ' | ' S
———d '—»—‘
1 | H 1
e P
' 1 ) )
' H 1 |

FIG. 29. Diagrams with upper and lower parts inter-
changed.
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FIG. 30. Diagrams with opposite arrow direction.

elementary cycle are interchanged. Hence, in
order to find S{*’ we need only to consider combina-
tions of parts (a), (c), and (e) in Fig. 28 and the

(n - 2) elementary cycles, and then multiply the
answer by 2.

In Fig. 30 we exhibit two diagrams of the same
form, but with opposite arrow direction. These
diagrams are topologically distinct. The only dif-
ference between diagrams (a) and (b) is that all the
cycles in (b) have the opposite direction to the
corresponding cycles in (a). Once again, it is
sufficient to consider only half of such diagrams.
However, not all graphs have another graph which
is obtained by arrow reversal. This is the case
for a graph which contains a cycle with a bubble.
The reason, as mentioned before, is that the bub-
ble can only exist in a cycle consisting of hole
lines. S!’ will therefore be equal to the number
of combinations of cycles (a) and (c), in Fig. 28,
and the (n - 2) elementary cycles which give a con-
nected diagram when the number of combinations
with cycle (a) is multiplied by 2 and that with cycle
(c) by 4.

As shown in Fig. 28 cycle (a) contains parts of
three vertices. Since we have # vertices, there
are altogether

n
()

different ways such a cycle can be placed among
the vertices. In this cycle there can be no further
connections to the vertex in the middle. Hence
this vertex can be considered removed from the
counting process. In order to have a connected
graph we must require, n = 3 excluded, that the
end vertices are not connected by an elementary
cycle. We can therefore think of this unit [that is,
the not yet connected Gaudin decomposed vertices
left at the place cycle (a) occupied] as one vertex
where lines go in and out. This means we have

(n - 2) vertices which can be connected together
ladderwise in (z - 3)! different ways. The total
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FIG. 31. Gaudin decomposed vertices to be linked
together to a connected diagram.

number of combinations containing cycle (a) in
Fig. 28 is therefore

2(§>w-sn . (A3)

Cycle (c) in Fig. 28 can be placed among the n
vertices in

()

different ways. One arrangement is shown in

Fig. 31. We let a dashed vertical line represent
the Gaudin vertex part where lines come in, a
dotted line where lines go out. At vertices 1, 2,
3, and 4 there are only single vertical lines left
after we have placed the cycle (c) among these
vertices. Starting, for example, at vertex n we
can go out from that vertex into (z - 3) vertices.
From one of these we can again go out into (n - 4)
vertices, etc. If we, for the first time, come into
either the vertex 1 or 2, let us say 2, we can go
out from either vertex 3 or 4 into vertex 1 or any
vertex where we have a double vertical line. This
gives an additional factor 2 as compared to the
case where we have (- 2) vertices connected to-
gether ladderwise. Hence, the total number of
ways of linking these vertices together is 2(n - 3)!.
The total number of combinations containing cycle
(c) in Fig. 28 is therefore

a(ﬁ)m-sn, (A4)
and finally
$“=2<g>m-3n+a<z>M-3H
=z(g>m-2n=”;2nx (A5)

Evaluation of S\?’. S\?’ is the number of topo-
logical nonequivalent nth-order connected diagrams
which are composed of (n - 2) cycles. As for S,
we classify the cycles according to the number of
Gaudin decomposed vertices they connect. From
Eq. (A1) we see that the diagrams which are com-
posed of (n - 2) cycles, to be counted here, must
have one of the following two distributions of ver-
tices:

I (6;2,22 ...2),

ORIGIN OF THE PAIRING INTERACTION... 887

which contains n — 3 elementary cycles of two ver-
tices,

o: (4,4;2,2...2),

which contains n — 4 elementary cycles of two ver-
tices. The sum of vertices is 2n as required.

S'®) is now obtained in the same way as we found
S\’ that is, as the total number of ways we can
combine such cycles into connected diagrams. How-
ever, for two reasons, the calculation is now some-
what more complicated.

First, if we look at diagrams of the type I, they
consist of one nonelementary cycle and (z - 3) ele-
mentary cycles. The number of such graphs are
found in exactly the same way as for the case with
(n - 1) cycles. The only difference is that there
are many more cycles which connect six vertices
than those connecting four, hence more possibil-
ities.

The nonelementary cycles in group II are the
same cycles as those shown in Fig. 28, but now
there are two of them in each diagram. Just as
in the calculation of S{}’, we need here only to con
sider cycles (a) and (c) of Fig. 28 and their com-
binations. Since the relative positions of the non-
elementary cycles turn out to be important, we
study subgroups where these two cycles have 4, 3,
2, 1, or zero vertices in common. We then con-
sidered these combinations of the two cycles as one
unit to be placed, as before, among the n vertices.

The combinatorial problem therefore falls into
three parts. First, we must find how many differ-
ent ways a certain unit can be placed among the n
vertices. Second, we must calculate the number
of ways the Gaudin decomposed vertices not being
connected in this unit can be linked together ladder-
wise so as to form a connected diagram. Last, we
have the somewhat more difficult problem of finding
in how many topologically different ways we can
form a given unit.

The first two parts are easily worked out. Sup-
pose the unit in question covers j vertices; then
such a unit can be placed among the n vertices in

(7)

ways. In Fig. 32 are shown typical examples of

FIG. 32. Typical

! \ i cycles connecting six
—
& - Gaudin decomposed ver-
) tices.
: ! | | |

(©
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o n-4), 2-4)1!, 3k-4)!. (A7)

e FIG. 33. A fourth-order diagram Using the same approach, we find for the type-II
. composed from two cycles, each L. ¢ 1 h in Fie. 34 wh th

i —— connecting four vertices. combinations of cycles shown in Fig. , W ere‘ e

L two nonelementary cycles have 3, 2, and 1 vertices

cycles connecting six Gaudin decomposed vertices.
The unit in type-I graphs is seen to cover from
four to six vertices. The unit in the type-II graphs,
where the nonelementary cycles share at least one
vertex, covers from four to seven vertices. The
case with four vertices covered is exceptional
since it only gives a connected diagram for n=4.
This is shown in Fig. 33. Typical examples of
combinations covering from five to seven vertices
are shown in Fig. 34.

Finally, we have the possibility that the two
nonelementary cycles have no vertex in common.
This is shown in Fig. 35.

These combinations give the factors

n\/n-3 n\fn-3 n\(n-
(2('3°) G)&) Q) -

Since the twocycles in Figs. 35(a) and 35(c) are iden-
tical, some care must be taken in order to avoid
double counting. We shall return to this point
later.

The next part in the evaluation of S,°’ is to find
in how many different ways the Gaudin decomposed
vertices, which are not connected by the nonele-
mentary cycles, can be linked together by elemen-
tary cycles to form a connected diagram. This we
do in exactly the same way as we treated the case
shown in Fig. 31. We find that the cycles shown
in Figs. 32(a)-32(c) can be linked together to a con-
nected diagram by the elementary cycles in, re-
spectively, the following number of ways:

(a6)

@)
n

]

in common, that these cycles can be linked together
in, respectively,

(n-5), 2(m-5)!, 3(mr-5)! (A8)

different ways.

Finally we have to consider the cases where the
two nonelementary cycles have no vertices in com-
mon, that is the cases shown in Figs. 35(a)-35(c).
Here special care must be taken not to count combi-
nations which result in disconnected diagrams. We
find the following number of different ways to link
these cycles together to a connected diagram:

2(n-5)!, 4x8 (n-5)! .

For n=8 there are 20 different ways of linking
those Gaudin decomposed vertices, which are left
after the cycles shown in Fig. 35(c) have been
formed, together to a connected diagram. This
verifies the last expression in (A9) for n=8.

We now consider the last part of the problem in
evaluating S2’: finding all the topologically distinct
ways of drawing a certain unit. As in the evalua-
tion of S’ we try to reduce the counting problem
by exploiting the fact that interchanging upper and
lower parts of a graph or reversing the arrows in
a given graph gives a topologically different graph.
The number of basic combinations are most easily
obtained by simply drawing all the irreducible
topological possibilities. The different units are
treated in subgroups according to the number of
vertices they cover. The details of this analysis
will be published elsewhere; we here give the final
result for 2

(n-5), (A9)

S\ = [4<Z ) +48<§) +96(:)](n- 4)! +[84<’; ) +784(’é >+1eso z)

For n=4,5,6, and 7 this formula must be inter-
preted carefully. For n=5, for example, a term
like

gs(z >(n-4)!

does not contribute since this term comes from
placing a cycle covering six vertices and we only
have five vertices in a fifth-order graph. For
n=8 we find

SBznl (Fgn®-Bn*+8n-4%) .

(A11)

J3) TG o

25)5°) 1o

r

APPENDIX B: ANALYSIS OF WEIGHT FACTORS FOR ALL
GRAPHS WITH« =1 AND 2 BY POLYGON METHOD; ASYMP-
TOTIC LIMITS

Graphs with a =1. Graphs in this group are
composed of one nonelementary cycle connecting
four Gaudin decomposed vertices and (z - 2) ele-
mentary cycles. For n>4 the elementary cycles
must be linked together in ladderlike chains. Sum-
mations over pair momentum d in such a chain can
be replaced by a single elementary cycle; the ef-
fect of such ladderlike chains of elementary cycles
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IS S —
O
(a)
e FIG. 34. Typical
: [ | combinations of two
P — cycles each connect-
I s < ’ ing four vertices.
(b)
| ——
L o

(c)

is just to establish identities between the pair mo-
menta in the four-point polygon. It is therefore

sufficient to look at a fourth-order graph. As ex-
plained in Appendix A the basic nonelementary cy-

cles in this class canbe Figs. 28(a) and 28(d). These

two cycles are then labelled according to our con-
ventions, see Fig. 36. They both give a four-point
polygon as shown in Fig. 37(a). The elementary
cycles can now be connected with the nonelemen-
tary cycles in two ways giving two sets of possible
identies between the pair momenta,

(-1’1="‘2 ’ &a=—§4
or

§1=—64 ’ 63=—€z .
We note that the last will always occur when the
cycle contains a bubble. In both cases the four-
point polygon is reduced to one of the three-point
polygons shown in Fig. 37(b). All the three-point
polygons (thus all graphs with n - 1 cycles or a =1)
have the same weight so that

N" T N, (@) = QN " (%)f[a =1 . (B1)

)

Graphs with a =2. As in the evaluation of S\,

1 1" ! 1 1] 1
I
(@)

i C) I N S SR
(b)

| — 1 | — H

e SN T N v

©

FIG. 35. Cycles each connecting four vertices but with
no common vertex.
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o FIG. 36. Cycles
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, duced polygons.
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(b)

we treat this case in two parts according to the
two possible distributions of vertices among the

(n - 2) cycles. We first look at the case in which
there are (n - 3) elementary cycles where the num-
ber of vertices has the distribution

(6;2,2,2...2).

Here again the role of the elementary cycles will
be to establish identities among the pair momenta
in the six-point polygon coming from the cycle in
which six Gaudin decomposed vertices are con-
nected. In Fig. 38 such a cycle and its nonreduced
polygon are shown. Since the elementary cycles
will be linked to this cycle so as to form a connected
diagram, they will establish identities between the
pair momenta q,, 43, ds and —d,, —ds;, —ds. This
is done in all possible ways, which for this case

is six. The resulting possible identities among the
pair momenta are as follows:

@ d=-d, d=-d, d5=-ds,
() d=-d, dy=-ds, ds=-4ds,
() d=-4dy, dy=-7dz, ds=-4Gs, (B2)
(@) q1=—§4, 63=—ae, 653"62’
() dy=-dg, d3=-q, d5=-3ds,
() d,=-4ds, 63=‘-’4, ass:"'*z

(b)

FIG. 37. Original polygon (a) and reduced polygons (b)
for the cycles of Fig. 36.
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(@) FIG. 38. Cycle con-
necting six vertices

and its nonreduced poly-
gon.

The corresponding reduced polygons are shown in
Fig. 39. We see that polygon (a) =polygon (e) and
polygon (b) =polygon (c) =polygon (f). The polygon
(d) will in some situations give the same weight as
(o), (c), or (f). In general, however, it may be
different. We therefore have three types of re-
duced four-point polygons. The graphs with =2
must now be examined in order to find how many
graphs give polygon (a), (b), or (d).

We first look at the graphs containing a nonele-
mentary cycle of the type shown in Fig. 32(a). In
such a cycle the bubbles can be in four different
positions, each topologically different. We first
look at the case shown in Fig. 32(a). According to
our labelling convention this part must give the
identities

(’11= 'as’ aa=—aa, (.15= —.C’l; .
From (B2) it is seen this gives the polygon Fig.
39(e). If both bubbles are in the top position, we
find the same polygon. However, if one bubble is
in the up position, the other in the down position,

we find the polygon Fig. 39(c). There is an equal
number of graphs giving these two polygons. Since

4
e 73
9 Y
5
(a) (b)
-a
-a, 4
\e]
-q
CW/E 3 >
9
(c) (d)
3
X3 a,
9 q
CI2 1
(e) (f)

FIG. 39. The six reduced polygons.
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FIG. 40. Results of detailed analysis for graphs of the
form (6; 2, 2, ...).

the total number of such graphs is known from
Appendix A, we conclude that there are

2(2) (n - 4)!

graphs giving, respectively, polygon Fig. 39(e)
and polygon Fig. 39(c).

The case shown in Fig. 32(b) must satisfy one of
the following set of identities:

§1= '54, 63=-az, .(is:‘ae
or
61=—c’1°, ds= ‘az, as='64-

These give an equal number of graphs with polygon
Fig. 39(a) and polygon Fig. 39(b). However, the
bubble can be in altogether eight different positions
each giving a topologically different cycle. A simi-
lar inspection of the other seven possibilities gives
the same result as for the case shown in Fig. 32(b).
We therefore conclude there are an equal number
of graphs of this type giving polygons (a) and (b).
The result from a similar examination of all graphs
in the subgroup characterized by the distribution
(6;2,2,...2) is shown in Fig. 40.

We now consider the subgroup of graphs charac-
terized by the distribution

(4,4;2,2, ...2).

A typical example of this is shown in Fig. 41(a).
Each of these cycles gives a nonreduced four-point
polygon as in Fig. 37(a). In order to obtain the re-
duced polygons we must again connect these two
cycles in all possible ways via elementary cycles.
The role of the elementary cycles is, as before,

to establish identities between the momenta d,, ds,
qﬁ: 67 and "62’ -ab - ae: “as- There are now

24 possible ways such connections can be made.
However, not all need be considered; four con-



|

FIG. 41. Reduced polygons for the cycles (a).

nections give disconnected graphs. Thus there are
20 possible connections to be treated. The follow-
ing lists the possible identities between the pair
momenta:

(1) dy==-d dy=-dy d5=-0dg dq=-ds
@) d,=-d; G=-d, G=-0dy d=-4do
() d; = - dy 63 == Gs, qs == 64, 67 = - s
4) 4, =- qz; 63 == ae, 65 == qs; 67 == 64,
(6) d, = - az, ds = - (Ie; as == ao 57 == as,
(6) dy=-Gdp ds=-ds d5=-dg d7=-ds
™ a, = - 64, ds = - 62, as == 66, 57 == ia,
®) 4, = - d,, ds = - dp, 65 == ae: 57 == ﬁe,
9 d, = - 64, 63 == ae, 55 == 62, 67 == aa,

Combinations of Polygon. Number of

cycles. graphs.
% m 45(n-4)
1] H 1] :

—— mfs"’

FIG. 42. Results of detailed analysis for graphs of the
form (4, 4; 2, 2, ...).
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Combinations of Polygon. Number of

cycles. graphs.
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FIG. 43. Results of detailed analysis for graphs of the
form (4, 4;2, 2, ...).

(10) 4, = - d,, ds = — de, qs =-dg Grp=- dz,
(11) dl == 64» as == qa, as == 62, 67 == ae,
(12) 61 == *4, as == 65, 65 == as; 67 == az,
(13) d; = - de, ds = - Gz 65 = - d, 57 = - G,
(14) 4, = -dey d3=-0dp d5=-Gs Gr=-ds
(15) 4, =-dg d3=-dy G5=-G d7=-ds
(16) 4, =-dey ds=-dy ds=-0ds Gr== 0y
(A7) §,=-dsy ds=-Gg d5=-0dz dr=-0ds
(18) ;= -dey ds=-dp ds=-dg Gr=-dy
(19) 4, = - d, is = - dy as = = dy, 61 = - dg,
(20) ﬁn == aa; as == 62, 65 == ae’ 67 == 64;
1) 4, = - 63, 63 == 64; 65 == qz, 67 == 65,
(22) 61 == da, aa == 64, qs == qs: qv == cTz,
(23) 4, = - g, 63 == is, 65 =-dy Gr=- ds,
(24) d, = - ds, 63 == 669 65 = = dy 67 = = Q.

(B3)

We see that the identities (1), (2), (7), and (8) cor-
respond to disconnected diagrams. They are there-
fore excluded. An examination of the reduced
polygons from the other 20 possibilities reveals
that there are two types. They are shown in Figs.
41(b) and 41(c). It should be noted that the polygon
shown in Fig. 41(c) represents a different sum
over phase space than the polygon shown in Fig.
39(a). In Fig. 39(a) all the pair momenta come
from one cycle; in Fig. 41(c) the pair momenta
come from two cycles but have one momentum in
common. Thus the weight contributed by Fig.
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41(c) is the product of the weights of two three-
point polygons with one momentum in common.
We find that the polygons resulting from (17), (18),
(23), and (24) areof the type shown in Fig. 41(b);
all the other possibilities give the polygon of Fig.
41(c).

In exactly the same manner as for the graphs
characterized by (6; 2, 2, ... 2), we now determine
how many graphs give either type of polygon. The
results are shown in Figs. 42-44.

We can summarize these results as follows.

All graphs with n = 1 cycles have the same weight
given by (B1),

N™% 2 N, (@ d;) = QN" (%)f[a =1] .
3132
We can therefore identify f[a =1] with f(a=1) of
(5.2),
fQ)=fla=1] . (B4)

Thus the total contribution from the sum over all
connected graphs with n - 1 cycles (e =1) is

S (- 1) QN"(Q/N) f(1). (B5)

The phase-space sums associated with the vari-
ous reduced polygons that are generated by the
graphs with @ =2 can be written in a manner sim-
ilar to (B1) as

QN"(Q/NYn!{fila=2]H+& n - 4) +& (0 — 4) (n - 5)] + fi|a =

+fila =2k 0 - 9)

STOLAN 4
Combinations Polygon  Number of
of cycles graphs

»
(n-sXn-6)n!
= PR L
%
; ol Ej £8(n-5)Xn-6)n!
g . i" -5)Xn-6)n!
H > | ﬁ(n n
e E]‘ Jx(n-5)n-6)N!
™
L L drsi-en

‘L 5(n-5Xn-6Xn-7)n!

@ Ba(n-sKn-6Xn-7)n!

FIG. 44. Results of detailed analysis for graphs of the
form 4, 4; 2, 2, ...).

QN™(Q/NVf[G4z) - (B6)

The factors f; [a=2], f;[a=2], f[a=2], fi[a=2],
and f; [« =2] come from the polygons (a), (b), and
(d) of Fig. 39 and (b) and (c) of Fig. 41; the total
contribution from graphs with @ =2 now can be
written

2][H+ & (n -4+ (n - A+ & (n - 4)¥n - 5)]

+kn-4)(n-5)]+fla=2][46(r-4) +&+E& -5 +§ (n -5)

+#n-5)(n-6)+km-5 (n-8)+gdgln-5 (n-6)(n-1)

+fsla=2]}+f+HB -5 ++m-5)+5n-5+Fn-5(n-6)+%Hn-5 (n-86)

+ 3+ -5 -6+ -5 (-6 -7]. (B

In the limit that » — <, the term in brackets is
dominated by

3
lim {--}~ {lagf4[a=2]+

4,8

mfs[a=2]

108 (f4[ =2]+4f5 [a =2]) .

(B8)
And in this same limit S;?’ becomes
3
: @ _ 51
].}'I.I: S, n!'{o8 - (B9)

Thus when n -« we can write the sum over all
connected graphs with n — 2 cycles (@ =2) as

S2(-1)2QN"Q/N)%f(2), (B10)
where
@) =1 (f,[a=2] +4fs[a=2]) . (B11)

Because the addition of ladder linkages does not
alter the polygon structure, the sum over connected
graphs with n — o cycles for values of a larger than
2 will in a similar manner be dominated as n -«
by some specific combination of polygon functions
in such a way that the contribution can be written

Si®(-1)* QN™Q/N)*f(a). (B12)

This is the basis of the f(a) model analyzed in
Sec. V.
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In this work, the effect of spin-orbit coupling (through spin-reversing scattering) on the
paramagnetic spin susceptibility of conduction electrons in a superconductor has been studied.
This was accomplished by investigating the nuclear magnetic resonance of two groups of (type-

I) superconducting samples.

In the first group of samples, consisting of different-sized sam-

ples of pure lead, the residual NMR shift in the limit of zero temperature was found to vary
with particle size, as is true for pure tin. The results are consistent with the existence of a
larger spin-orbit interaction in lead. The second group of samples, containing various con-
centrations of In, Sb, Pb, and Bi impurities, exhibited residual NMR shifts which were con-
sistent with the spin-orbit interactions characteristic of the respective impurities. Taken
together, the NMR results are consistent with the microscopic theory of superconductivity,

including the effects of spin-orbit interactions.

1. INTRODUCTION

In the 13 years that have passed since the devel-
opment of the Bardeen, Cooper, and Schrieffer
(BCS) theory, ! most of the properties of supercon-
ductors have been explained. Using the BCS de-
scription, Yosida? calculated the conduction-electron
paramagnetic spin susceptibility as a function of
temperature for a superconductor, and as a result
of the pairing of electronic spins, he predicted a
vanishing susceptibility at 7=0°K. The electronic
spin susceptibility may be investigated directly
by measuring the shift of the nuclear magnetic
resonance. For simple metals, the NMR shift
has been attributed to the paramagnetism of the
conduction-electron spins, together with their
contact hyperfine interaction with the nucleus.?
However, NMR experiments on various supercon-
ductors have shown a nonvanishing shift as the
temperature is extrapolated to zero, in apparent
disagreement with the theory.*® Two general
ideas have been proposed to explain the residual
NMR shift in superconductors: (i) In a supercon-
ductor, the paramagnetic spin susceptibility (tem-
perature dependent) is modified by spin-reversing

scattering due either to the boundaries of the small
specimens or to the presence of impurities, "®

and (ii) there exist other contributions to the shift
which are temperature independent in the super-
conducting state.'®!! (It must be remembered that
because of the Meissner effect, NMR experiments
in type-I superconductors have required samples
such that at least one dimension is the order of a
few hundred angstroms.) Recent work by Wright!'?:13
on tin particles, in which the electronic mean free
path was limited by varying the particle size,
supports the spin-reversing scattering theory. He
found that the residual shift was a function of the
particle size and that the data fit the spin-reversing
scattering theory best by assuming that any other
contributions (temperature independent in the
superconducting state) were unimportant. However,
because only the electronic mean free path is varied,
Wright’s experiments alone do not demonstrate
conclusively the effect of the spin-orbit coupling.

It is the purpose of the present work to illustrate
the effect of the spin-orbit coupling strength on the
spin-reversing scattering and hence the electronic
spin susceptibility. This has been done in two

ways by performing two series of experiments. In



